
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Jakub Klímek

XML Formats Evolution and
Integration

Department of Software Engineering

Supervisor of the doctoral thesis: Mgr. Martin Nečaský, Ph.D.
Study programme: Computer Science

Specialization: Software Systems

Prague 2013

Let me thank Eliška, my parents, friends and colleagues from the XML and Web
Engineering research group for supporting me throughout my lengthy studies.

Let me also thank my supervisor Mgr. Martin Nečaský, Ph.D. for his exem-
plary leadership and direction and all the anonymous reviewers of my papers for
helpful suggestions and insightful opinions.

Finally, let me thank the Czech Science Foundation (GAČR) and Grant Agen-
cy of Charles University (GAUK) for supporting me through their grants GAČR
P202/10/0573, GAČR P201/09/0990, GAUK 3110, GAUK 572212, GAUK SVV-
2010-261312, GAUK SVV-2011-263312, GAUK SVV-2012-265312 and GAUK
SVV-2013-267312, respectively.

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, 7.5.2013 Jakub Klímek

Název práce: Evoluce a integrace XML formátů

Autor: Jakub Klímek

Katedra: Katedra softwarového inženýrství

Vedoucí disertační práce: Mgr. Martin Nečaský, Ph.D.

Abstrakt: V poslední dekádě se XML stalo široce rozšířeným datovým modelem
pro výměnu dat. Spousta uživatelů XML má spoustu XML formátů popsaných
pomocí XML schémat. Pro usnadnění správy několika XML schémat modelu-
jících podobnou realitu byl definován konceptuální model pro XML. S jeho definicí
přišly různé výzvy, které bylo třeba dále zkoumat. Tato práce se zaměřuje na dvě
z těchto výzev. První výzvou je správa a evoluce tohoto vícevrstvého konceptuál-
ního modelu podle toho, jak se v čase vyvíjí modelovaná realita, XML schémata
a aplikace. Druhou výzvou je umožnit většině uživatelů, kteří již XML schémata
používají bez konceptuálního modelu, jejich schémata použít k jeho poloauto-
matické tvorbě. Navíc byl podniknut krok směrem k integraci konceptuálního
modelování pro XML a technik sémantického webu.

Klíčová slova: XML schéma, evoluce, integrace, konceptuální modelování, MDA

Title: XML Formats Evolution and Integration

Author: Jakub Klímek

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D.

Abstract: In the past decade XML became a wide-spread information exchange
data model. Many XML users have many XML formats described by XML
schemas. To ease the management of multiple XML schemas modeling similar
reality, the conceptual model for XML was defined. With its definition came
various challenges that needed to be further researched. This thesis focuses on two
of those challenges. The first challenge is to manage the evolution of the multi-
level conceptual model as the modeled reality, XML schemas and applications
evolve in time. The second challenge is to allow the majority of users who already
use XML schemas in their system without the conceptual model to use their
schemas to semi-automatically create one. In addition a step towards integration
of the conceptual modeling of XML and semantic web techniques was taken.

Keywords: XML schema, evolution, integration, conceptual modeling, MDA

Contents

Introduction 1
Outline . 2

1 Aims of the Thesis 5
1.1 Research topics . 5

1.1.1 XML schemas evolution 5
1.1.2 Integration of XML data sources 7

1.2 Our approach idea . 7
1.2.1 Conceptual levels . 8
1.2.2 Logical levels . 10

2 Reverse-engineering of XML Schemas: A Survey 13
2.1 Introduction . 13
2.2 Terms . 14

2.2.1 XML schemas . 14
2.2.2 Model-Driven Architecture 14
2.2.3 UML class diagrams . 14
2.2.4 Schema matching . 15

2.3 Framework for evolution and integration of XML schemas 15
2.4 Comparison criteria . 16
2.5 Mapping to user-friendly models 17

2.5.1 Yang Weidong et al. 17
2.5.2 Mikael R. Jensen et al. 17
2.5.3 DIXSE framework . 18
2.5.4 Xyleme . 18
2.5.5 XTM - XML Tree Model 18
2.5.6 Nečaský . 18

2.6 Approaches to mapping to ontologies 19
2.6.1 Canonic Conceptual Models (CCMs) 19
2.6.2 Xiao et al. 19
2.6.3 Bedini et al. 20
2.6.4 DTD2OWL . 20

2.7 Summary . 20
2.8 Conclusion . 21

3 Semi-automatic Integration of Web Service Interfaces 23
3.1 Introduction . 23
3.2 Related work . 24
3.3 Conceptual Model for XML . 25
3.4 Algorithm . 28

3.4.1 Measuring Initial Similarity 29
3.4.2 Building Interpretation . 29

3.5 Experiments . 32
3.6 Conclusion . 34

I

4 A Framework for XML Schema Integration via Conceptual Mod-
el 37
4.1 Introduction . 37
4.2 Integration Framework . 38

4.2.1 Similarity Functions in General 38
4.2.2 Auxiliary Similarity Functions 39
4.2.3 PI : Measuring Initial Similarities 39
4.2.4 PII : Initial Interpretation Setup 40
4.2.5 PIII : Constructing Final Interpretation 40

4.3 Measuring Quality . 43
4.4 Experimental Evaluation . 43

4.4.1 Implementation Issues . 46
4.5 Related Work . 46
4.6 Conclusion . 48

5 XML Schema Integration with Reusable Schema Parts 51
5.1 Introduction . 51
5.2 Algorithm . 51

5.2.1 Overview . 52
5.2.2 Measuring Initial Similarity 52
5.2.3 Initial interpretation . 53
5.2.4 Final Interpretation . 53

5.3 Evaluation . 55
5.4 Conclusion . 56

6 Refined Conceptual Model for XML 57
6.1 Platform-Independent Model . 57
6.2 Platform-Specific Model . 58
6.3 Formal Model of Conceptual Perspective 62

7 Model-Driven Approach to XML Schema Evolution 67
7.1 Introduction . 67
7.2 Motivation . 67
7.3 Operations . 68
7.4 Propagation of Atomic Operations 70
7.5 Evaluation . 72
7.6 Conclusions . 73

8 Evolution and Change Management of XML-based Systems 75
8.1 Introduction . 75
8.2 Motivating and Running Example 77
8.3 XML Evolution Framework . 78

8.3.1 Selected Part of the Problem 80
8.4 Atomic Operations . 82

8.4.1 Atomic Operations for PIM Schema Evolution 83
8.4.2 Atomic Operations for PSM Schema Evolution 86

8.5 Propagation of Atomic Operations 92
8.5.1 Propagation from PIM to PSM Level 92
8.5.2 Propagation from PSM to PIM Level 96

II

8.5.3 Minimality and Correctness of Atomic Operations 97
8.5.4 Completeness of Atomic Operations 98

8.6 Composite Operations . 99
8.7 Related Work . 100
8.8 Case Study and Evaluation . 102

8.8.1 Case Study: National Register for Public Procurement . . 103
8.8.2 Evaluation and Comparison to Other Approaches 106

8.9 Conclusions . 109

9 Inheritance in Conceptual Modeling for XML 111
9.1 Introduction . 111
9.2 Conceptual Model with Inheritance 112

9.2.1 Platform-Independent Model 112
9.2.2 Platform–Specific Model 113
9.2.3 Interpretation of PSM schema against PIM schema 115
9.2.4 Conceptual model summary 117

9.3 Translation of inheritance to XML Schema 117
9.4 Related work . 118
9.5 Evaluation and Conclusion . 119

10 Formal Evolution of XML Schemas with Inheritance 121
10.1 Introduction . 121
10.2 Atomic Operations . 122

10.2.1 Atomic Operations for PIM Schema Inheritance Evolution 122
10.2.2 Atomic Operations for PSM Schema Inheritance Evolution 123

10.3 Propagation of Atomic Operations 125
10.4 Implementation . 128
10.5 Evalutation . 128
10.6 Related Work . 129
10.7 Conclusions . 129

11 When Theory Meets Practice: A Case Report on Conceptual
Modeling for XML 131
11.1 Introduction . 131
11.2 Public Contracts in the Czech Republic 132
11.3 Conceptual Model for Public Contracts 135
11.4 Improving Quality . 136

11.4.1 XML Format Readability 137
11.4.2 XML Format Integrability 138
11.4.3 XML Format Adaptability 138

11.5 Methodology . 143
11.6 Evaluation and Related Work . 145
11.7 Conclusions . 146

12 eXolutio: Tool for XML Schema and Data Management 147
12.1 Introduction . 147
12.2 eXolutio architecture . 147
12.3 Related work . 150
12.4 Conclusion . 151

III

13 Generating Lowering and Lifting Schema Mappings for Semantic
Web Services 153
13.1 Introduction . 153
13.2 Conceptual Model for XML . 154
13.3 PIM and Ontology relations . 155

13.3.1 OWL to PIM . 155
13.3.2 PIM to OWL . 156

13.4 Lifting and Lowering XSLT stylesheets 156
13.4.1 Lifting XSLT . 156
13.4.2 Lowering XSLT . 159
13.4.3 SAWSDL extension to XML schema 161

13.5 Implementation . 161
13.6 Related Work . 162
13.7 Conclusions . 162

14 Using Schematron as Schema Language in Conceptual Modeling
for XML 163
14.1 Introduction . 163
14.2 Schematron . 164

14.2.1 Core constructs . 165
14.2.2 Additional constructs . 166
14.2.3 Schematron implementations 166
14.2.4 Schematron properties . 167

14.3 PSM to Schematron translation 167
14.3.1 Overall view of the translation 168
14.3.2 Allowed root element names 168
14.3.3 Allowed names . 169
14.3.4 Allowed contexts . 169
14.3.5 Required structural constraints 171
14.3.6 Required sibling relationships 174
14.3.7 Required text restrictions 175
14.3.8 Translation summary . 175

14.4 Related work . 177
14.5 Evaluation and implementation 177
14.6 Conclusions . 179

Conclusion and Open Problems 181

Bibliography 183

IV

Introduction
Recently, XML [126] has become a corner stone of many information systems. It
is a de facto standard for data exchange (i.e. Web services [35]) and it is also
a popular data model in databases [23]. XML is a metalanguage that allows to
specify several XML formats that suit our needs. To prevent chaos, the XML for-
mats are specified by XML schemas expressed in an XML schema language like
DTD [126] or XML Schema [128]. The schema can be used, for example, each
time an XML document described by the schema is processed to validate the
document. Usually, a system does not use only one XML schema, but a set
of different XML schemas, each in a particular logical execution part. We can,
therefore, speak of a family of XML schemas. As the number of possible usages
of XML grows, so does the need of easy management of families of XML schemas.

Having a system which exploits a family of XML schemas, we face the problem
of XML schema evolution. The XML schemas may need to be evolved whenever
user requirements or surrounding environment changes. A single change may
influence zero or more XML schemas. Without a proper technique, we have to
identify the XML schemas affected by the change manually and ensure that they
are evolved coherently with each other. When the XML schemas have already
been deployed, in the run-time environment there are also XML documents which
might became invalid and need to be, therefore, modified appropriately.

In [86], a conceptual model for XML is introduced. It is a technique based
on the Model-Driven Development (MDD) [78] methodology. It considers mod-
eling the XML schemas at two MDD levels – platform-independent and platform-
specific. First, the whole application data domain is modeled independently of
the XML schemas in the form of a platform-independent schema. Then, each
XML schema in the family is designed in the form of a platform-specific schema
which is mapped to the platform-independent schema. It may be then automat-
ically translated to an expression in a selected XML schema language, e.g. XSD
(XML Schema Definition) [128] or RELAX NG [29]. In this thesis, we mainly
focus on two aspects of conceptual modeling for XML.

XML schema evolution First is the coherent evolution of XML schemas ac-
cording to the changing requirements. The mappings of platform-specific schemas
to platform-independent schema naturally support evolution management. A
change is explicitly expressed as a change to the platform-independent schema
or one of the platform-specific schemas. The mappings allow us to propagate
the change between platform-independent and platform-specific levels and evolve
the whole family of XML schemas coherently. The challenge addressed in this
thesis is how to provide a formal background for this kind of operations in the
multi-level conceptual model. The formal background is used for evaluation of
the proposed set of operations in regard to its minimality, completeness and cor-
rectness. Also, we formally describe the mechanism of coherent propagation of
changes between the platform-independent and platform-specific level of the con-
ceptual model. This brings the advantage of assurance that when a designer uses
the conceptual model and executes operations, no modeled semantics is lost with-
out his knowledge, which is crucial especially when there is a larger number of

1

XML schemas involved. In addition, complex operations can be created simply
by concatenation of the proposed operations without the need to be concerned
about correct propagation as it is ensured by the operations proposed in this
thesis.

XML schema integration The problem with conceptual modeling for XML
is that it is relatively new and it requires that the system designer starts with the
platform-independent conceptual model first. Once the designer has the platform-
independent level of the model in place, XML formats and, consequently, schemas
can be derived from it easily. Unfortunately, in most cases the situation is that
designers have their XML schemas designed without the conceptual model, if they
have any schemas at all. Therefore, it is paramount that we enable such designers
to create the conceptual model based on their pre-existing XML schemas. The
same technique can be used when a designer needs to augment an existing con-
ceptual model by including a new part of reality that may be present in an XML
schema that was not created using the conceptual model. We call the process
XML schema integration and it is the second main topic of this thesis.

Additional contributions In addition to handling XML schema evolution and
integration using the conceptual model for XML we provide additional usabili-
ty enhancements for the coneptual model itself. In a supervised master theses
we proposed a technique to use the Schematron XML schema language in the
conceptual model for XML, which opens an entire research area of using rule-
based XML schema languages to describe structural constraints. Moreover, we
proposed a technique for an easy transformation of XML data to RDF using on-
tologies and the conceptual model for XML. Finally, we described our tool which
we used for implementation of the proposed approaches called eXolutio.

Outline
The rest of the thesis is structured in chapters according to individual contribu-
tions as published in our research papers. The order of the chapters is basically
chronological, divided in the three problem groups desribed earlier. First group
of contributions is XML schema integration, which is based on the original con-
ceptual model for XML as described in [86] and Chapter 3. Then we redefine the
conceptual model with our current version from [96] in Chapter 6 and we present
our contributions in XML schema evolution, which are based on this updated
conceptual model version. Finally, we present the additional contributions to the
conceptual modeling for XML in general, which show possible use cases for the
proposed techniques.

Most of the content in this thesis was primarily authored by the
author of this thesis and supervised by the thesis supervisor Mgr.
Martin Nečaský, Ph.D. except for chapters 6,8 and 11. Those were
primarily authored by the thesis supervisor with contributions by the
author of the thesis and other colleagues from our research group (see
citations for complete author lists). However, they are included in

2

this thesis for completeness and to provide the reader with the related
context.

We start with our initial publication of our research intent in both main
areas in Chapter 1 as published in the Ph.D. workshop paper Integration and
Evolution of XML Data via Common Data Model [58], in which we describe the
further directions of our research. Then there are three groups of contributions:
XML schema integration papers, XML schema evolution papers and additional
contributions to conceptual modeling for XML in general.

In the XML schema integration group are the following contributions:

• In Chapter 2 we present a related work survey in the area of XML schema
integration. Published as a conference paper Reverse-engineering of XML
Schemas: A Survey [59].

• In Chapter 3 we present our core contribution in the area of XML schema
integration, which consists of definition and evaluation of methods for semi-
automatic construction of mappings from XML schemas to the platform-
independent part of the conceptual model for XML. Published as a confer-
ence paper Semi-automatic Integration of Web Service Interfaces [60].

• In Chapter 4 we further abstract our approach to XML schema integration
and we introduce a framework for XML schema integration methods. Pub-
lished as a workshop paper A Framework for XML Schema Integration via
Conceptual Model [57].

• In Chapter 5 we extend the XML schema integration method to take into
consideration reusable schema parts in the form of structural representants
in our conceptual model for XML. Published as a conference paper XML
Schema Integration with Reusable Schema Parts [56].

In the XML schema evolution group are the following contributions:

• In Chapter 6 we formally describe the updated version of our conceptual
model for XML which was considerably refined as part of our research in
our impacted journal paper When conceptual model meets grammar: A dual
approach to XML data modeling [96]. In the paper, the conceptual model
is presented from two perspectives - grammatical based on regular tree
grammars and conceptual, which is the base of this thesis and is described
in the chapter. To maintain consistence of formalisms throughout the thesis,
we present our conceptual model definition from [89].

• In Chapter 7 we describe our initial results in the area as we identify basic
operations and their granularity needed for formal definition and description
of the problem. Published as a workshop paper Model-Driven Approach to
XML Schema Evolution [95].

• In Chapter 8 we present our contribution to the area of XML schema evo-
lution in a form of a related work survey and a formal definition of atomic
and composite operations and their propagation between the abstraction
levels of the conceptual model for XML. Published as an impacted journal
paper Evolution and Change Management of XML-based Systems [89].

3

• In Chapter 9 we preset the first part of our main contribution to XML
schema evolution by extending the refined conceptual model for XML with
modeling of inheritance relations. Published as a conference paper On In-
heritance in Conceptual Modeling for XML [63].

• In Chapter 10 we present the second part of our main contribution to XML
schema evolution, which is an extension to the formal model of atomic and
composite operations considering our inheritance extension to the concep-
tual model for XML. Published as a conference paper Formal Evolution of
XML Schemas with Inheritance [62]. [63].

The additional contributions to conceptual modeling for XML in general are:

• In Chapter 11 we present a case report in which we identify methods for
measuring quality of XML schemas. Published as a conference paper When
Theory Meets Practice: A Case Report on Conceptual Modeling for XML
[88].

• In Chapter 12 we present a description of eXolutio, which is our second
generation implementation of our proposed methods (first generation was
called XCase and was published as a workshop paper [54]). Published as a
conference paper eXolutio: Tool for XML Schema and Data Management
[55].

• In Chapter 13 we show how to integrate conceptual modeling for XML
and semantic web technologies. Published as a workshop paper Generating
Lowering and Lifting Schema Mappings for Semantic Web Services [61].

• In Chapter 14 we present a method for generating Schematron [49] schemas
using the conceptual modeling for XML. Published as a conference paper
Using Schematron as Schema Language in Conceptual Modeling for XML
[15].

4

1. Aims of the Thesis
In this chapter we define our research topics which we then follow in the rest
of the thesis. The contents of this chapter was published as a Ph.D. workshop
paper Integration and Evolution of XML Data via Common Data Model1 [58] at
the EDBT/ICDT 2010 conference.

1.1 Research topics
There are two main research topics in this doctoral thesis. The first one is evo-
lution of a family of XML schemas that describe a common data model from
different views as different applications need only certain subsets of the data.
The second one is integration of various XML data sources into one easily man-
ageable system. Those two areas of research are brought closely together by our
approach using conceptual modeling as both can be addressed by introducing a
common conceptual model to the system. From this model, all the XML schemas
used in the system can be derived by the user, creating mappings between the
elements of the schemas and the elements of the conceptual model. As any XML
data source can be described by a schema, the method works here as well. A
disadvantage of this approach is the fact that we first need the conceptual model
and then we can derive the XML schemas. Because of that, the second part of
our doctoral work is focused on reverse engineering of the mappings between an
XML schema and the conceptual model, which can also mean that we need to
create the model when there is none.

1.1.1 XML schemas evolution
This research topic addresses the following problem. Let us have a company
providing e.g. web services (or generally using various XML messages). Those
messages will probably contain some subsets of the company’s data depending
on the purpose of each message. As an example of the problem of XML schema
evolution, let us have a company that receives orders and let us focus on a part
of the system that processes purchases as seen on Figure 1.1. Let the messages
used in the process be XML messages each with a separate XML schema.

The XML schemas are visualized in Figures 1.2. The figures show graphi-
cal representations of XML schemas called PSMs (platform specific models), ex-
plained later in Section 1.2. Simply put, they model the elements and attributes
of the XML schema and its structure. The operations that use these schemas are:

1. A client process sends an order to the aggregator. The order contains a list of
items purchased and an address to which to send the order. (Figure 1.2(a))

2. The aggregator sends the list of items to the inventory. (Figure 1.2(b))

3. The inventory checks if the items are available and makes a reservation.
Then it sends a response containing a reservation number to the aggregator

1http://portal.acm.org/citation.cfm?id=1754239.1754283

5

http://portal.acm.org/citation.cfm?id=1754239.1754283

Figure 1.1: Example of a system with 6 XML schemas

4. If the items are in stock the aggregator sends a message containing the
reservation number and the address to the distribution. (Figure 1.2(c))

5. Distribution registers the order and sends a confirmation to the aggregator.

6. The aggregator sends a confirmation or an "out-of-stock" message back to
the client.

(a) Message 1 (b) Message 2 (c) Message 3

Figure 1.2: Example schemas of messages

This simple example demonstrates the problems we solve in the doctoral the-
sis. All the messages in the process deal with the same data, although some
of them use only a subset of the data. We could say that the XML schemas
specify views on the data. To be specific, message 1 contains a list of items and
an address, message 2 contains only the list of items, but not the address, as it

6

is not needed in the inventory. It provides a simplified view on the data that
best suits the purpose of the message. These XML schemas need to be designed
and maintained, which today is done mostly manually. For example, to change
the representation of a customer’s name from one value name to a pair of val-
ues forename and surname, a domain expert would have to identify the XML
formats containing customer names (Messages 1 and 3 in our case) and perform
the change in each format manually. Remember that our example is only a small
part of a company’s infrastructure, so in real life, it could be dozens of schemas
instead of two in our case and also the changes made to them can be far more
complicated.

1.1.2 Integration of XML data sources
This topic is closely related to the previous one, when viewed from the perspec-
tive of mapping different data sources to the common conceptual model. As an
example, let us have a company that uses online advertisement through various
providers. All the advertisement providers will probably require similar data for
the ad service, and for simplicity, let us assume that they use a web service in-
terface (and therefore XML messages) for the management of the ads. Now, we
want to add an advertisement to all the ad services at once. Today, this would be
done by creating a universal XML message for addition of an advertisement and
a set of XSLT scripts [52], one for each ad service. And here we are faced again
with the same problem: management of the set of these scripts. What if my
data representation of an advertisement changes? We would need to go through
every XSLT script manually and adjust it. This situation can again be solved by
applying a conceptual model, from which we can derive an XML schema for each
ad service and through the mappings of XML schemas to the conceptual model
we can manage them all from one place. The two questions are:

1. How do we create the common conceptual model with the knowledge given
to us by the XML schemas?

2. How do we create those mappings, when we already have the conceptual
model?

These questions are addressed by the second part of our work where we deal
with reverse engineering of the conceptual model from the XML schemas, during
which the mappings are created, assuring that we can manage the system from
one place.

1.2 Our approach idea
In our work, we view the problem of XML evolution and integration as having
five levels as it can be seen in Figure 1.3. Components from all levels are con-
nected with components from one level above and one level below. This allows
for a change anywhere in the system to be propagated through these connections
to all affected places automatically. The levels in the figure can be divided in-
to two groups. The platform-independent and platform-specific levels are called

7

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema 1

PSM schema 1

PIM schema

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema i

(DTD, XML Schema, Relax NG, …)

PSM schema i PSM schema n.

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level

. . .

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema n

Figure 1.3: Five level XML evolution architecture

conceptual levels. The remaining three levels, the schema, operational and exten-
sional, containing the actual files present in the system, are called logical levels.
In our work, we focus on the conceptual levels, as they are paramount for the
XML data evolution and integration. We already have an automatic algorithm
translating our PSMs to XML Schema and we are working on algorithms for
automatic translation to other XML schema languages, such as DTD or Relax
NG [29]. The following sections describe these levels in detail.

1.2.1 Conceptual levels

The two conceptual levels are platform independent and platform specific. They
are based on MDA - Model-Driven Architecture [78]. It is a general approach
to modeling software systems and can be profitably applied to data modeling as
well. MDA distinguishes several types of models that are used for modeling at
different levels of abstraction. For our work, two types of models are important.

A Platform-Independent Model (PIM, conceptual model) allows modeling data
at the conceptual level. A PIM is abstracted from a representation of the data in
concrete data models such as relational or XML. An example PIM can be seen
in Figure 1.4.

A Platform-Specific Model (PSM) models how the data is represented in a
target data model (such as XML). For each target data model, we need a special
PSM that is able to capture its implementation details. A PSM then models
a representation of the problem domain in this particular target data model,
it provides a mapping between the conceptual model and a target data model
schema. Examples of PSMs can be seen in Figure 1.2.

Because we want to model XML representations of data, we need a conceptual
model based on MDA, that would allow us to model data on the PIM level as
well as various XML formats on the PSM level. In the following section (1.2.1),
we will describe a conceptual model, which is a proper model for our work.

8

Figure 1.4: Platform independent model

The conceptual model for XML

The conceptual model that we use is described in detail in [86] and then redefined
with better formal background in Chapter 6. It utilizes UML class diagrams to
apply MDA to model XML data on two levels: PIM and PSM. A PIM can be a
description of a company domain, which usually already exists. One PSM models
how elements of PIM are mapped to XML and in fact describes a specific type
of an XML message used in the company’s IT infrastructure. While the PIM is
usually only one, there can be any number of PSMs representing different views
on the same company data as used under different circumstances as can be seen
in the introduction.

The main feature of this conceptual model is that all the PSM components
are formally interrelated with the components of the PIM level. This allows for
describing semantics of the PSM components by components from the PIM level.
Using this, a software implementing this conceptual model can maintain con-
nections between corresponding PIM and PSM components. These connections
enable a change in a PIM component (class, association, etc.) to be propagated
to all the affected PSM components in PSMs2. Even more interestingly, a change
in a PSM component can be propagated to the PIM level, where all the other de-
rived3 PSM components can be discovered and updated as well. In other words,
when someone decides that a customer’s name is to be represented by two values
(first and last name) instead of one string, it is possible to automatically find
all relevant usages of this value and change all the affected XML schemas and
the conceptual model at the same time. So far, these connections between PIM
and PSM components are created by the user during the creation of PSMs from
the PIM. We have already implemented this approach in our open-source tool
called XCase described in Section 1.2.1. Part of our work is focused on an semi-
automatic algorithm which would ease the process of creating those connections
the other way around, from an existing PSM (which we can get automatically
from an XML schema) to the PIM, by suggesting probable matches in the PIM
for each PSM component.

2A PSM directly represents an XML schema, which can be written in any one of XML
schema languages, such as DTD, XML Schema, Relax NG, etc.

3PSM components connected to the PIM components are derived from the PIM components.

9

XCase - A Tool for XML Data Modeling

XCase4 is a tool for conceptual XML data modeling implementing the original
version of the described conceptual model. Since this was the first tool for con-
ceptual modeling of XML using this model, its main purpose was to examine its
possibilities as well as conceptual modeling for XML in general. It provides an
automatic propagation of changes from PIM to PSMs and vice versa. This means
the user can model his PIM and from there, derive corresponding PSMs, which
can be later automatically translated to XML Schema. When, for example, a
change in the PIM occurs, it is automatically propagated to all affected PSMs
and therefore, XML schemas.

Currently, the conceptual model for XML is described formally in Chapter 6
and its current implementation is called eXolutio and is described in Chapter 12.

1.2.2 Logical levels
Now that the conceptual levels of the XML evolution architecture have been
presented, the logical levels will be described briefly as well as the propagation
of changes from the conceptual levels to the logical levels.

Schema (a.k.a. logical) level

The schema level contains the actual XML schemas written in an XML schema
language such as DTD, XML Schema, Relax NG, etc. Those can be automat-
ically generated from PSMs [86, p. 109-128], which are on the platform-specific
conceptual level. They can be generated every time the conceptual model evolves.

Operational level

XML can be used as means to exchange data, but it also can be used to store
the data in a database. When we have a database containing XML data, we
also use queries to access it. The queries are dependent on the XML schemas
describing the data, therefore, need to be changed when the schemas change. The
operational level makes it possible for the changes made during the XML schema
evolution process to be propagated further, keeping the queries consistent. The
propagation of changes to this level is part of our future work.

Extensional level

This level contains the actual XML documents. When the XML schemas evolve,
the documents they describe may become invalid in the process. The extensional
level makes it possible for a change in the XML schemas to be propagated (i.e.
through an XSLT transformation) to the actual documents, changing them to be
compatible with the evolved XML schemas. The propagation of changes to this
level is also a part of our future work.

The conceptual model on its own is today only useful when taken into account
during the design of the data model. However, a common situation is that we have
XML data sources not described by this model and we want to use it for their

4http://www.ksi.mff.cuni.cz/xcase

10

http://www.ksi.mff.cuni.cz/xcase

maintenance and development anyway (XML data sources integration). This
means to reverse-engineer the XML schemas describing those data sources and
create their mapping to the conceptual model. The problem of XML schema
evolution and reverse-engineering was discussed in my master thesis, and my
doctoral work will continue in this effort and extend the results achieved there.

11

12

2. Reverse-engineering of XML
Schemas: A Survey
As approaches to conceptual modeling of XML data become more popular, a
need arises to reverse-engineer existing schemas to the conceptual models. They
make the management of XML schemas easier as well as provide means for ac-
complishing integration of various XML data sources. Some methods for reverse-
engineering of XML schemas have been proposed and in this chapter, they are
compared using various criteria such as used XML schema languages, level of us-
er involvement, number of XML schemas that can be covered by the conceptual
model or support for consecutive XML schema evolution. They are also evaluat-
ed according to their potential to be used as parts of a system for management,
evolution and integration of XML as a whole.

In this chapter, we compare and evaluate approaches for reverse-engineering
of XML schemas according to various criteria, including their usefulness as a
method that can be integrated into a system for management of evolution of
XML schemas. Therefore, this chapter covers the related work for the XML
schema integration part of this thesis.

The contents of this chapter was published as a conference paper Reverse-
engineering of XML Schemas: A Survey1 [59] in Dateso 2010 Annual Interna-
tional Workshop on DAtabases, TExts, Specifications and Objects (DATESO
2010).

2.1 Introduction
As the number of possible usages of XML grows, so does the need of easy man-
agement of large numbers of XML data sources and their integration. There we
can use conceptual modeling of XML data. It allows a domain expert to model
the problem domain independently of the implementation (XML in our case) and
then create corresponding XML schemas, which are used to describe a structure of
XML documents. A common situation today is that a company uses several XML
formats for various purposes and has these formats described by an XML schema.
To ease the process of managing those formats and schemas as they evolve in time,
the company can use a conceptual model such as [4, 11, 69, 73, 86, 113], to which
the schemas would be connected. A problem usually arises when there is a new
format that should be connected to the conceptual model, as most of the con-
ceptual models do not support this operation well enough. During the process of
connecting the new format to the conceptual model, the model may need to be
extended, if the format contains a concept that was not covered by the model.
A special case of this problem is, when the company does not have a conceptual
model at all, and wants to create it from the schemas which they already have
(they extend an empty model).

Therefore, an important aspect of the approaches used for conceptual mod-
eling of XML data is if and how we can create the model from existing XML

1http://ceur-ws.org/Vol-567/paper19.pdf

13

http://ceur-ws.org/Vol-567/paper19.pdf

schemas (or connect a new schema to an existing model) and once we have it,
if we can use it for the management of evolution of our set of schemas. The
process of creating a conceptual model from existing XML schemas is what we
call Reverse-engineering of XML schemas.

Outline The rest of this chapter is structured as follows. In section 2.2, an in-
troduction to the frequently used techniques in this area is given. In section 2.3 we
introduce our framework for evolution and integration of XML schemas, against
which the approaches will be evaluated. Section 2.4 contains a description of our
comparison criteria. In section 2.5, we describe approaches to the problem, which
reverse-engineer XML schemas to various user-friendlier models. In section 2.6,
approaches to reverse-engineering to ontologies are described. In section 2.7 we
summarize our findings and section 2.8 concludes.

2.2 Terms
In this section we provide an introduction to basic techniques used widely in the
area of reverse-engineering of XML schemas.

2.2.1 XML schemas
In this paper, by XML schema language we mean one of the XML schema lan-
guages such as DTD [126], XML Schema [128], Relax NG [29], Schematron [49]
etc. We state this because sometimes an XML schema gets confused with the
actual XML Schema language.

2.2.2 Model-Driven Architecture
Model-Driven Architecture (MDA) [78] is a general approach to modeling soft-
ware systems and can be profitably applied to data modeling as well. MDA
distinguishes several types of models that are used for modeling at different
levels of abstraction. For this paper, two types of models are important. A
Platform-Independent Model (PIM) allows modeling data at the conceptual level.
A PIM diagram is abstracted from a representation of the data in concrete da-
ta models such as relational or XML. A Platform-Specific Model (PSM) models
how the data is represented in a target data model. For each target data model
(such as XML), we need a special PSM that is able to capture its implementation
details. A PSM diagram then models a representation of the problem domain in
this particular target data model, it provides a mapping between the conceptual
diagram and a target data model schema.

2.2.3 UML class diagrams
A large number of approaches to reverse-engineering use UML class diagrams as
a PIM. Basically, it consists of classes representing concepts, associations repre-
senting relations and attributes of classes, representing properties of the concepts.
For a more detailed description see [101, 102].

14

2.2.4 Schema matching
Most of the reverse engineering approaches use some methods of schema match-
ing. They include string comparisons, data type compatibility measurements,
structural similarity measurements and linguistic resources like thesauri and dic-
tionaries. These methods are surveyed in detail in [121, 45]. There is one ma-
jor difference between XML schema matching and reverse-engineering of XML
schemas to conceptual models. XML schema matching usually works with two
different XML schemas (written in XML schema languages) and the goal is to
find mappings of components of one schema to the components of the second
schema. On the other hand, reverse-engineering of XML schemas works with one
XML schema and optionally a conceptual model. The goal is either to create
the conceptual model when there is none, or to find appropriate mappings of the
XML schema components to the components of the model, which can be written
in e.g. UML, and therefore is of a whole different type.

2.3 Framework for evolution and integration of
XML schemas

In this section, we introduce our framework for evolution and integration of
XML schemas. It comprises six levels, each representing a different view of an
XML system and its evolution. The framework is depicted in Figure 2.1. The
lowest level, called extensional level, represents XML documents. Its parent lev-
el, called operational level, represents operations over XML documents, i.e. XML
queries. The level above is called schema level and represents XML schemas that
describe the structure of the XML documents.

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema 1

PSM diagram 1

PIM diagram

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema i

(DTD, XML Schema, Relax NG, …)

PSM diagram i PSM diagram n.

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level

. . .

XML

documents

XML

documents

XML

documents

XML

documents

XML

documents
XML queries

XML schema n

Ontology

Level
Ontology

Figure 2.1: Six-level XML evolution and integration framework

The platform-independent and platform-specific levels follow MDA [78] which
is based on modeling the problem domain on different levels of abstraction.
The platform-independent level represents the whole problem domain. It con-
sists of a conceptual model that specifies the problem domain independently of

15

its representation in the XML formats below. We call the conceptual model
a platform-independent model (PIM) of the problem domain. The level below,
called platform-specific level, represents mappings of the problem domain to par-
ticular XML formats. For each XML format it comprises a model of mapping of
a selected part of the PIM to XML element and attribute declarations. We call
this model platform-specific model (PSM) of the selected XML format. Recently,
a number of approaches translating XML schemas to an ontology have appeared.
The ontology level is the topmost in our framework.

In our framework, components in documents on individual levels can be for-
mally binded with components in documents on the neighboring levels. These
bindings can then be used for evolution of the conceptual model, XML schemas,
XML documents and queries. They provide means for automatic detection of all
the places on all the levels where a single change has an impact.

2.4 Comparison criteria
We will firstly introduce several criteria which we will later use to compare current
approaches to reverse-engineering of XML schemas. In particular, we will focus
on the following criteria:

1. Target model - on what level of our framework does the target model of
the reverse-engineering method belong. This criterion is important, because
lots of methods only visualize the XML schema in another model (e.g. UML
class diagrams) and therefore their target is on the platform-specific level
(it is a PSM in our framework). A true conceptual model on the platform-
independent level (a PIM in our framework) should be independent of the
target implementation completely. If it is a conceptual model bent for a
specific implementation, it is in fact a PSM. Recently, some approaches
to mapping an XML schema directly to an ontology (the top level of our
framework) have appeared. This criterion distinguishes among these three
types of target models.

2. Number of schemas supported by the model - whether the method is limited
to only one schema, or whether it can reverse-engineer multiple schemas to
one model. This is also very important, because to be able to manage a
set of XML schemas, it is not enough to have a separate model for each
schema. We need all the schemas to be related to one model.

3. XML schema languages supported - These can be DTD, XML Schema,
Relax NG, Schematron, etc. As can be seen from our framework, the con-
ceptual model can be and should be independent of the actual XML schema
language used on the schema level, because the target data model (which a
PSM should represent) is XML itself, not a specific XML schema language.

4. Mapping to an existing model - whether the method can map a schema to
an already existing model or whether it can only generate a new model.
This criterion is paramount for evaluating the possibility of integrating an
approach to a bigger system for evolution and integration of XML schemas.
If it only can create a new model for each input, it cannot be used if we

16

already have the model and only want to add a new XML schema to the
system.

5. Level of user involvement - methods can be automatic or semi-automatic
(relying on human intervention). It is impossible to infer a conceptual
diagram automatically, as so far only a human can determine if two objects
represent the same concept. And because we need an exact and reliable
match, if we want to use an approach as a part of a system for integration
of XML data, we can not rely on an automatic translation (mapping) and
we need the user to at least confirm a match.

6. Evolution support - whether the approach is a part of a system that also
supports evolving the schema once it is integrated into the system (when the
system changes). This criterion indicates, whether the method is developed
by itself, or if it already is a part of a system that also helps with the
evolution of the mapped schemas (e.g. by preserving the bindings between
levels of our framework)

2.5 Mapping to user-friendly models
In this section we evaluate different approaches to reverse-engineering of XML
schemas to various more user-friendly models.

2.5.1 Yang Weidong et al.
In [133], there is an algorithm for automatic generation of UML class diagrams
(PIMs in our framework) from DTDs according to MDA using a DTD graph as
a PSM. The authors also claim that they can generate UML class diagrams from
XSDs, but the prototype implementation is not freely available, so it cannot be
verified. The main drawback of this approach is that it only serves as an automatic
translator from DTD to UML meant to make the schema more understandable
to people who do not know DTD or XML Schema.

This approach does not support mapping of multiple XML schemas to the
PIM and it does not preserve any mappings between the PIM and the PSM nor
between the PSM and the DTD. It is automatic, limited to DTD only and it
cannot map a schema to an existing model. The bright side is that it actually
uses both PIM and PSM correctly.

2.5.2 Mikael R. Jensen et al.
In [51], another method of automatic conversion of DTDs to UML class diagrams
is presented. Again, it is meant for easier browsing of XML data available on the
Internet and to ease the work of a data integrator. In contrast with the previous
method, the UML diagrams reflect the structure of the DTD an therefore are
only on the PSM level.

This approach does not support mapping of multiple XML schemas and it
does not preserve any mappings between the PSM and the DTD. It is automatic,
limited to DTD only and it cannot map a schema to an existing model.

17

2.5.3 DIXSE framework
In [116], a semi-automatic method of deriving a semantic model from several
DTDs is presented. By default, for each element of every DTD a new element is
created in the model. This process is done automatically. If the user wants to
create a more meaningful model (e.g. wants all Address elements to be mapped
to one element of the model), a rule written in their DIXml language extending
the element in the DTD must be created manually. The model is a PSM as it
still preserves the DTD structure. It uses the Telos [83] metamodeling language.

This approach supports semi-automatic mapping of multiple schemas to a
conceptual model, but it does not preserve any mappings between the PSM and
the DTDs and it is limited to DTD only. It can map a new DTD to an existing
model.

2.5.4 Xyleme
In [115], a project called Xyleme is described. Its focus is to provide a unified view
of a large number of heterogeneous XML documents described by DTDs. This en-
ables the user to perform queries on one unified model (called an abstract DTD),
to which all the other DTDs describing the XML documents are mapped auto-
matically. The methods for discovery of mappings are mainly language based
(thesauri, discovery of synonyms, abbreviations, etc.). A semi-automatic pro-
totype implementation called SAMAG was used to evaluate the approach. In
SAMAG, a user needs to validate each syntactic relationship detected.

This approach supports semi-automatic mapping of multiple schemas to a
model which is a PSM. It preserves no mapping between the PSM and the DTDs.
It is limited to DTD only.

2.5.5 XTM - XML Tree Model
In [42], a conceptual model for XML called XTM - XML Tree Model is proposed,
including an algorithm for reverse-engineering of XML Schema into XTM. It
also has a strong theoretical background. However, it is still only a PSM in our
framework.

This approach automatically visualizes one schema at a time, is limited to
XML Schema and does not maintain any mappings between the PSM and the
schemas.

2.5.6 Nečaský
In [87], a complex approach to the process of reverse engineering of XML schemas
to a conceptual model is presented. The model follows MDA as it uses UML class
diagrams as a PIM and their extension as PSMs. It is further described in [86].
Because the model has two levels, the process is divided into two parts. The
first part is an automatic translation of an XML schema to a PSM. The PSMs
are, however, independent of any specific XML schema language; the approach
is presented using XML Schema. The second part is a semi-automatic algorithm
for the reconstruction of mappings between the PSM and a PIM, but it has
some drawbacks. The most problematic one is the computational cost which is

18

up to mn, where m is a maximum number of outgoing PIM associations from
one PIM class and n is the number of PIM classes in the model. Therefore in
practice, the algorithm will not work if the PIM diagram contains a bigger number
of associations. Nevertheless, the algorithm uses maximum of information that
we can get from a PSM and thus can offer the best results. An implementation
in an experimental stage is available in the development version of XCase [54],
which is a tool implementing the conceptual model and its evolution.

This approach supports semi-automatic reverse-engineering to PSMs and to
a PIM. It supports multiple schemas, is independent of any specific XML schema
language and it can also map to an existing conceptual model. It maintains
mappings between the PIM and the PSM and therefore support further schema
evolution.

2.6 Approaches to mapping to ontologies
Recently, a number of methods of reverse-engineering of XML schemas to ontolo-
gies have appeared. The main difference between a PIM and an ontology is that
ontologies are more expressive, as the relations they capture can be more complex
and they may even involve logical formulae. A frequent language for ontologies
is OWL [132].

2.6.1 Canonic Conceptual Models (CCMs)
In [40], a method for integration of XML schemas into an ontology is presented.
At first, each input DTD is semi-automatically transformed into a so called CCM
- Canonic Conceptual Model. It combines the ER [26] and ORM [46] models. A
default transformation is made and a user is then allowed to make adjustments
where needed. The CCMs are PSMs in our framework. Then, each CCM is in-
tegrated (again semi-automatically - user has to verify/adjust) to form the final
ontology. The mappings between the individual CCM components and the com-
ponents of the ontology are preserved. Although the authors call it an ontology, it
is in fact more of a conceptual diagram - a PIM in our framework, because it still
is a CCM, only independent of the XML structure. This method only provides a
unified view of the integrated data so far. No implementation was mentioned.

This approach supports semi-automatic mapping of multiple DTDs to corre-
sponding PSMs and to a PIM. It is restricted to DTD only. It preserves mappings
between PSMs and a PIM.

2.6.2 Xiao et al.
In [135], an algorithm is proposed to match given XML document elements to
given ontology concepts to achieve an integrated view of multiple XML docu-
ments, when matched to the same ontology. It is based on automatic structural
matching of a DTD tree to an ontology tree. However, a precondition is that
a domain expert has provided a table of synonyms, i.e. a list of semantically
matching strings from the DTD and from the ontology (which seems to be a
strong precondition).

19

This in fact semi-automatic approach maps multiple DTDs, it is limited to
DTD only and it does not preserve any mappings between the DTDs and the
ontology. It can only map to an existing ontology.

2.6.3 Bedini et al.
In [13], a general architecture of building ontologies from XML schemas is pre-
sented. However, no specific methods are suggested, only a sequence of tasks
that a tool for ontology building should follow and also a set of rules according to
which concepts and their relations can be extracted from a XML Schema. The
general architecture takes the need for consecutive schema evolution into account.
A semi-automatic prototype implementation called Janus is presented briefly. It
requires human assistance for merging of similar concepts and it does not preserve
any mappings between the schemas and the ontology.

This approach is semi-automatic, it is limited to XML schema and it does
not preserve any mappings between the schemas and the ontology. It also only
creates new ontologies.

2.6.4 DTD2OWL
In [129], a method of automatic translation of DTD to OWL ontology is suggest-
ed. In addition, this method transforms the actual XML documents into OWL
individuals. The authors suggest that the whole web should be transformed this
way. This method is pure translation of one DTD to one OWL ontology with no
support for schema evolution nor conceptual modeling.

This approach is automatic, it is limited to DTD and it can only map one
DTD to one new ontology, not preserving any mappings.

2.7 Summary
In this section, a brief summary of evaluated approaches and the comparison
criteria is given.

Model Schemas Languages Automatic Maps to Evolution
2.5.1 PSM One DTD Yes New No
2.5.2 PSM One DTD Yes New No
2.5.3 PSM Multiple DTD No New, Existing No
2.5.4 PSM Multiple DTD Yes New, Existing No
2.5.5 PSM One XSD Yes New No
2.5.6 PIM Multiple Anya No New, Existing Yes
2.6.1 PIM Multiple DTD No New, Existing Yes
2.6.2 O Multiple DTD No Existing No
2.6.3 O Multiple XSD No New No
2.6.4 O One DTD Yes New No

aThis method is not limited to any XML schema language. Currently implemented for
XML Schema

Table 2.1: Overview of approaches according to various criteria

20

Let us review the comparison criteria used (the columns in Table 2.1 corre-
spond to them):

1. Whether the target of the approach is a PIM, PSM or an ontology

2. Whether the approach is limited to only one schema or whether it can
handle multiple schemas

3. Which XML schema languages can the approach handle

4. Whether the method is a pure automatic translation or whether the process
is semi-automatic - a user is involved

5. Whether the method creates a new target model or whether it can use an
existing one

6. Whether the method preserves mappings between the schemas and the tar-
get model, which can be used for consecutive schema evolution

The best suitable method for our intention of creating a system for management of
XML schema evolution and integration is 2.5.6. However, it has some issues with
computational complexity, which need to be resolved before its implementation.

2.8 Conclusion
In this chapter, we have compared and evaluated several approaches for reverse-
engineering of XML schemas according to given comparison criteria. Among
them, only one was well suited for being a part of a larger system for evolution
and integration of XML schemas. Also, this survey showed a severe lack of
support for newer XML schema languages like Relax NG or Schematron in the
area of conceptual modeling of XML and reverse-engineering of XML schemas.

21

22

3. Semi-automatic Integration of
Web Service Interfaces
Modern information systems may exploit numerous web services for communica-
tion. Each web service may exploit its own XML format for data representation
which causes problems with their integration and evolution. Manual integration
and management of evolution of the XML formats may be very hard. In this
chapter, we present a novel method which exploits a conceptual schema. We
introduce an algorithm which helps a domain expert to map the XML formats
to the conceptual schema. It measures similarities between the XML formats
and the schema and adjusts them on the base of the input from the expert. The
result is a precise mapping. The schema then integrates the XML formats and
facilitates their evolution - a change can be made only once in the schema and
propagated to the XML formats.

The contents of this chapter is published as a conference paper Semi-automatic
Integration of Web Service Interfaces1 [60] in 2010 IEEE International Conference
on Web Services (ICWS 2010).

3.1 Introduction
We aim at the problem of integration of XML schemas by lifting them to a com-
mon conceptual schema. In our previous work (see Chapter 1 and [58]) and [86]
a framework for XML schema integration and evolution is introduced. It sup-
poses a set of XML schemas that are conceptually related to the same problem
domain. As a problem domain, we can consider, e.g., purchasing products. Sam-
ple XML schemas may be XML schemas for purchase orders, product catalogue,
customer detail, etc. The central part of the framework is a conceptual schema
of the problem domain. Each XML schema is then mapped to the conceptual
schema. In other words, the conceptual schema integrates the XML schemas.
We then exploit the mappings to evolve the XML schemas when a change occurs.
Simply speaking, the change is made only once at the conceptual level and then
propagated to the affected XML schemas.

Contributions In practice, a conceptual schema and XML schemas exist sep-
arately, i.e. there are no mappings between both levels. This disallows to exploit
the integration and evolution capabilities of our framework. In our work [86], we
have introduced a method for deriving required XML schemas from the concep-
tual schema. However, it does not consider an existing XML schema that needs
to be somehow mapped to the conceptual schema. In this work, we introduce a
reversed method which allows to (1) correctly map a supplied XML schema to
the conceptual schema, and (2) adapt the conceptual schema if a particular part
of the XML schema can not be mapped.

Our aim is not to develop new methods for measuring schema similarities.
These methods have been already intensively studied in the literature. Instead,
we exploit the existing ones and combine them together. For this, we provide

1http://doi.ieeecomputersociety.org/10.1109/ICWS.2010.28

23

http://doi.ieeecomputersociety.org/10.1109/ICWS.2010.28

an algorithm skeleton that can be supplemented by various similarity methods.
An important contribution of the method, not considered by existing similarity
methods, is an active participation of a domain expert. This is necessary, since
we need to achieve exact mapping.

Outline The rest of this chapter is organized as follows. In Section 3.2, we
present related work. Section 3.4 introduces an algorithm which assists a do-
main expert during mapping discovery. In Section 3.5, we introduce two kinds of
precision measures and present some experimental results and conclude in Sec-
tion 3.6.

3.2 Related work
Recent literature has been focused on a discovery of mappings of XML formats to
a common model. We can identify several motivations. Firstly, XML schemas are
hardly readable and a friendly graphical notation is necessary. This motivation
has appeared in [42][51] or [133]. A survey of these approaches can be found
in [137]. They introduce an algorithm for automatic conversion of a given XML
schema to a UML class diagram. The result exactly corresponds to the given
XML schema. However, these approaches can not be applied in our case – we
need to map an XML schema to an existing conceptual diagram.

Secondly, there are approaches aimed at an integration of a set of XML for-
mat into a common XML format. These works include, e.g. the DIXSE frame-
work [116] or Xyleme project [115]. They have a similar idea to derive a common
abstract XML format from the existing XML formats. The mappings of the XML
format to the abstract format are discovered automatically. The mappings can
then be checked by a domain expert who can also specify additional mappings
manually in the case of DIXSE framework. These approaches are closer to our
work. However, they do not consider mapping of XML formats to a more abstract
conceptual diagram which needs to be adapted when necessary. Moreover, they
do not consider a domain expert participating directly in the mapping discovery
process.

Thirdly, there are approaches that convert or map XML formats to ontologies.
DTD2OWL [129] presents a simple method of automatic translation of an XML
format with an XML schema expressed in DTD into an ontology. More advanced
methods are presented in [40] and [135]. They both introduce an algorithm
that automatically maps an XML format to an ontology. This is close to our
approach since a conceptual schema can be understood as an ontology. In both
cases, the domain expert can edit the discovered mappings but is not involved in
the discovery process directly.

Many of these approaches widely exploit research results of the schema match-
ing community. There have been introduced many methods or systems for au-
tomatic discovery of mappings between two given schemas based on measuring
syntactical and semantical similarity of strings as well as measuring structural
similarities, e.g. [70][17][108]. Nice surveys of these approaches can be found
in [121][41] or [5]. The purpose of our work is not to introduce new similarity
methods. We exploit and adapt existing ones to be applicable when mapping
XML formats to the conceptual schema. We also extend these methods with an

24

active participation of the domain expert. We will use only basic similarity meth-
ods and show how they can be substituted with advanced methods introduced in
the recent literature.

In [87] an algorithm which discovers mappings of XML formats to a conceptu-
al schema was introduced. It was a theoretical approach without implementation.
Its time complexity was too high as its search space was very large. It was also
complicated for the domain expert to participate in the mapping process.

3.3 Conceptual Model for XML
In this section, we re-introduce our conceptual model for XML. The reverse-
engineering approaches in this thesis are designed using the original version of
the conceptual model for XML from [86] and implemented in our original tool [54].
While the formalism slightly differs from the redesigned version from Chapter 6,
the idea remains the same.

We introduce the notions of PIM and PSM formally in this section. We firstly
introduce several symbols. L denotes the set of all string labels. La and Le are
two sets s.t. La ∪ Le = L, La ∩ Le = ∅ and each label in La starts with the ‘@‘
symbol. D denotes the set of all basic data types such as string, integer, etc.
C ⊂ N × (N ∪ {∗}) is a set of cardinality constraints where N denotes the set of
natural numbers and (∀(x, y) ∈ C) (x ≤ y ∨ y = ∗). Finally, PS and OS denote
the power set of a set S and the set of all ordered sequences of elements of S,
respectively.

The PIM meta-model is de-facto the model of UML class diagrams. It in-
troduces three modeling constructs: PIM class, PIM attribute and PIM binary
association. We provide its formalization in Definition 3.1.

Definition 3.1 A PIM is a 9-tuple M = (C, A, R, name, type, attrs, ends,
acard, rcard) where

• C, A and R are sets of PIM classes, PIM attributes and PIM associations,
respectively,
• name : C ∪ A ∪ R → L is a function which assigns a label to each PIM
class, attribute or association; the label is called name,
• type : A → D is a function which assigns a data type to each PIM attribute,
• attrs : C → PA is a function which assigns a set of PIM attributes to each
PIM class s.t.:
– (∀A ∈ A)(∃C ∈ C)(A ∈ attrs(C)), and
– (∀C1, C2 ∈ C)(attrs(C1) ∩ attrs(C2) = ∅),

• ends : R →
(
C
2

)
is a function which assigns a set of two PIM classes to

each PIM association; for R ∈ R with ends(R) = {C1, C2} we say that C1
and C2 participate in R,
• acard : A → C is a function which assigns a cardinality to each PIM at-
tribute,
• rcard : R × C → C is a function which assigns a cardinality to each PIM
class C ∈ C and PIM association R s.t. C participates in R.

25

For a given PIMM, we will use an auxiliary function class : A → C defined
as (∀A ∈ A, C ∈ C) (class(A) = C ⇔ A ∈ attrs(C)).

Figure 3.1: Employment PIM

A sample PIM is depicted in Figure 3.1. It models a simple jobs and education
domain. We will further need a construct called a PIM path which is defined by
Definition 3.2.

Definition 3.2 Let M = (C, A, R, name, type, attrs, ends, acard, rcard) be
a PIM. A PIM path P is an ordered sequence 〈R1, . . . , Rn〉 ∈ OR where (∀1 ≤
i ≤ n)) (ends(Ri) = {Ci−1, Ci}). C0 and Cn are called start and end of P ,
respectively.

We will use auxiliary functions start, end : OR → C defined for each PIM path
P which return the start and end of P , respectively.

The PSM meta-model consists of three modeling constructs which reflect the
PIM constructs: PSM class, PSM attribute, and PSM binary association. Its
formalization is in Definition 3.3.

Definition 3.3 A PSM is a 10-tupleM′ = (C ′, A′, R′, name′, type′, xml′, attrs′,
content′, acard′, rcard′) where

• C ′, A′ are sets of PSM classes and attributes, resp.,
• R′ ⊆ C ′ × C ′ is a set of oriented PSM associations; for R′ = (C ′1, C ′2) ∈ R′
we call C ′1 parent and C ′2 child of R,
• name′ : C ′ ∪ A′ → L is a function which assigns a label to each PSM class
or attribute; the label is called name,

26

• type′ : A′ → D is a function which assigns a data type to each PSM at-
tribute,
• xml′ : C ′ ∪ A′ → L is a function which assigns a label to each PSM class or
attribute where (∀ C ′ ∈ C ′) (xml′(C ′) ∈ Le); the label is called xml label,
• attrs′ : C ′ → OA

′ is a function which assigns a sequence of PSM attributes
to each PSM class s.t.:
– (∀A′ ∈ A′)(∃C ′ ∈ C ′)(A′ ∈ attrs′(C ′)), and
– (∀C ′1, C ′2 ∈ C ′)(attrs′(C ′1) ∩ attrs(C ′2) = ∅),

• content′ : C ′ → O(R′) is function which assigns a sequence of PSM associ-
ations to each PSM class s.t. (∀C ′ ∈ C ′) (∀R′ ∈ R′) (R′ ∈ content′(C ′) ⇒
parent(R′) = C ′),
• acard′ : A′ → C is a function which assigns a cardinality to each PSM
attribute,
• rcard′ : R′ → C is a function which assigns a cardinality to each PIM
association.

Moreover, there must be a PSM class C ′ ∈ C ′ which is not a child of any PSM
association in R′. C ′ is called the root PSM class of M′. Any other PIM class
in C ′ \ {C ′} must be a child of exactly one PSM association in R′.

We use a function class′ : A′→ C ′ defined as (∀A′ ∈ A′, C ′ ∈ C ′) (class′(A′) =
C ′⇔ A′ ∈ attrs′(C ′)) and functions parent′, child′ :R′→ C ′ assigning the parent
and child to each R′ ∈ R′, respectively.

Figure 3.2: Sample PSM

The definition ensures that the graph with a set of nodes C ′ and a set of orient-
ed edges R′ is an oriented rooted tree. A sample PSM is depicted in Figure 3.2.
PSM components are visualized similarly to PIM components. In addition, for
a PSM class C ′, xml′(C ′) is depicted above the rectangle of C ′. For a PSM
attribute A′, we depict name′(A′) and xml′(C ′) separated by the word ‘as‘. If
name′(A′) = xml′(C ′), we show only name′(A′).

We view PSM components from grammatical and conceptual perspective. From
the grammatical perspective, a PSM class C ′ models XML elements with the name

27

specified by xml′(C ′) and content specified by attrs′(C ′) and content′(C ′). A
PSM attribute A′ ∈ attrs′(C ′) models XML elements with a simple content (if
xml′(A′) ∈ Le) or XML attributes (if xml′(A′) ∈ La). In both cases, the name
is specified by xml′(A′). A PSM association R′ ∈ content′(C ′) models hierarchi-
cal parent-child relationships between XML elements modeled by parent(R′) and
child(R′). Each PSM can be automatically translated to an XML schema in a
particular XML schema language. Conversely an XML schema can be translated
to a PSM. See [86] and [87] for details. A partial translation of our sample PSM
expressed in DTD is depicted in Figure 3.2.

From the conceptual perspective, the PSM maps each XML element and at-
tribute to a PIM class or attribute and each XML parent-child relationship to a
PIM association. This mapping is formally expressed as an interpretation intro-
duced by Definition 3.4.

Definition 3.4 An interpretation I of a PSM M′ = (C ′, A′, R′, name′, type′,
xml′, attrs′, content′, acard′, rcard′) against a PIMM = (C, A, R, name, type,
attrs, ends, acard, rcard) is a total function defined as

if P ′ ∈


C ′ then I(P ′) ∈ C;
A′ then I(P ′) ∈ A;
R′ then I(P ′) ∈ R.

The following conditions must be satisfied:

(1) (∀A′ ∈ A′)(class(I(A′)) = I(class′(A′)))
(2) (∀R′ ∈ R′)(ends(I(R′)) =

{I(parent′(R′)), I(child′(R′))})

A part of an interpretation of our sample PSM against the sample PIM is as
follows:

• C ′: I(Employee) = Company; I(Country) = Country; I(WorkExperience)
= Job; ...
• A′: I(Employer.name) = Company.name; ...
• R′: I((Employer,Country)) = 〈{Company,Address}, {Address,Country}〉;
I((Employer,WorkExperience) = 〈{Company,Job}〉; ...

It can be easily verified that it satisfies the conditions given by Definition 3.4.

3.4 Algorithm
We introduce an algorithm which builds an interpretation I of a PSM against
a PIM. I must be correct in the formal sense, i.e. it must fulfil Definition 3.4.
Moreover, it must be correct in the conceptual sense, i.e. a PSM component
and its PIM interpretation must conceptually correspond to the same real-world
concept. We ensure the formal correctness. The conceptual correctness is ensured
by a domain expert.

The algorithm works in two phases. Firstly, it measures initial similarities
between PSM and PIM attributes and classes. Secondly, it builds the interpre-
tation with an assistance of a domain expert. Formally, we will suppose a PSM

28

M′ = (C ′, A′, R′, name′, type′, xml′, attrs′, content′, acard′, rcard′) and a PIM
M = (C, A, R, name, type, attrs, ends, acard, rcard) on the input. The output
of the algorithm is an interpretation I ofM′ againstM.

We will need to measure a similarity of two strings Sstr(s1, s2). There are
various known string similarity methods, e.g. edit distance, N -grams, etc. We
use a simple method measuring the length of their common substring.

3.4.1 Measuring Initial Similarity
Attributes. Let (A′, A) ∈ A′ × A. The similarity of A′ and A is a weighted
sum

Sinit−attr(A′, A) = winit−attr ∗ Stype(A′, A) +
(1− winit−attr) ∗ max{Sstr(name′(A′), name(A)),

Sstr(xml′(A′), name(A))}

The first component, Stype(A′, A), measures the type similarity of both attributes.
For this, we use the identity function in this chapter for simplicity. It is possi-
ble to employ more advanced techniques reflecting, e.g. sub-typing or attribute
cardinalities. The second component is the maximum of two string similarities.
winit−attr ∈ (0, 1) is a weighting factor which is set by the expert.

Classes. Let (C ′, C) ∈ C ′ × C. The similarity between C ′ and C is a weighted
sum

Sinit−class(C ′, C) = winit−class ∗ Sinit−attrs(C ′, C) +
(1− winit−class) ∗ max{Sstr(name′(C ′), name(C)),

Sstr(xml′(C ′), name(C))}

winit−class ∈ (0, 1) is a weighting factor. Sinit−attrs(C ′, C) measures a similarity
between attrs′(C ′) and attrs(C). It is defined as Sinit−attrs(C ′, C) = ∑

A′∈attrs′(C′)
(MAXA∈attrs(C) S

init−attr(A′, A)). In other words it finds for each PSM attribute
A′ ∈ attrs′(C ′) the most similar PIM attribute A of C and summarizes these
similarities.

3.4.2 Building Interpretation
The second part of the algorithm iteratively traverses the PSM classes inM′ in
pre-order and helps the domain expert to build the interpretation. Individual
steps are shown in Algorithm 1. For an actual PSM class C ′ ∈ C ′, the algorithm
firstly constructs I(C ′) (lines 2 - 6). Secondly, it constructs I(A′) for each A′ ∈
attrs(C ′) (lines 7 - 19). Finally, it constructs I(R′) for each R′ ∈ content(C ′)
(lines 20 - 22). It can be shown that this algorithm runs in O(N3) where N
is the number of PSM classes and in O(n × log(n)) where n is the number of
PIM classes.

Building Class Interpretation

To construct I(C ′), the algorithm firstly computes Sclass(C ′, C) for each C ∈
C ′ at line 3. It is a weighted sum of two similarities. The former is the initial
similarity Sinit−class(C ′, C). The other is a reversed class similarity adjustment
Sadj−class(C ′, C) which we discuss in a while. The algorithm then sorts the PIM

29

Algorithm 1 Interpretation Construction Algorithm
1: for all C ′ ∈ C′ in post-order do
2: for all C ∈ C do
3: Sclass(C ′, C) ← wclass ∗ Sinit−class(C ′, C) +

(1− wclass) ∗ 1
Sadj−class(C′,C)

4: end for
5: Offer the list of PIM classes sorted by Sclass to the domain expert.
6: I(C ′) ← C where C ∈ C′ is the PIM class selected by the domain expert.
7: for all A′ ∈ attrs(C ′) do
8: for all A ∈ A do
9: Sattr(A′, A) ← wattr ∗ Sinit−attr(A′, A) +

(1− wattr) ∗ 1
µ(I(C′),class(A))+1

10: end for
11: Offer the list of PIM attributes sorted by Sattr to the domain expert.
12: I(A′) ← A where A ∈ A′ is the PIM attribute depicted by the domain expert.
13: if I(class′(A′)) 6= class(A) then
14: Create PSM class D′ ∈ C′; I(D′) ← class(A)
15: Put A′ to attrs′(D′)
16: Create PSM association R′ = (C ′, D′) ∈ R′
17: Put R′ at the beginning of content(C ′).
18: end if
19: end for
20: for all R′ ∈ content(C ′) do
21: I(R′) ← P where P is the PIM path connecting I(C ′) and I(child′(R′)) s.t.

µ(I(C ′), I(child′(R′))) is minimal.
22: end for
23: end for

classes by their similarity with C ′ and offers the sorted list to the domain expert
at line 5. The expert selects a PIM class from the list and the algorithm sets
I(C ′) to this selected class at line 6.

Class similarity adjustment Sadj−class(C ′, C) is computed on the base of the
completed part of I. We have already set I(D′) for each PSM class D′ preceding
C ′. The situation is depicted in Figure 3.4 (a) with predecessors in the part with
grey background. Sadj−class(C ′, C) is a combination of the distances between C
and PIM classes which are interpretations of the predecessors of C ′. We use
µ(C,D) to denote the distance between PIM classes C and D. The idea is
depicted in Figure 3.4 (b).

Algorithm 1 is only a skeleton which needs to be supplemented with particular
methods for (1) measuring distances between PIM classes (i.e. suitable metric),
(2) combining distances, and (3) selecting predecessors of C ′. In this chapter, we
supplement the skeleton with basic methods to show that the general idea works.
For measuring the distance between two PIM classes C and D, we use the length
of the shortest PIM path connecting C and D.

As the distance combination method which results in Sadj−class(C ′, C) we can
also choose from various possibilities. In this chapter, we use

Sadj−class(C ′, C) = (
n∑

i=1

µ(C, I(D′i))
n

) + 1

where D′1, . . ., D′n are the selected predecessors of C ′. Sadj−class(C ′, C) is the
average of the lengths of the shortest PIM paths between C and each I(D′i).

30

Figure 3.3: Employment PSM

C’

D’1

D’n
I(D’1)

C

I(D’n)

. . .

µ(C, I(D’n))

(a) PSM (b) PIM

µ(C, I(D’1))
. . .

Figure 3.4: Initial Class Similarity Adjustment

Finally, we need to decide what predecessors of C ′ will be selected to compute
Sadj−class(C ′, C). In general, we can select all predecessors. However, this would
result in a high time complexity. To restrict the search space, we use a heuristic
that the impact of a predecessor D′ of C ′ to the final similarity decreases with
the growing distance of D′ from C ′. Therefore, we consider only the children of
C ′ which are the closest predecessors to C ′. This basic selection method can be
extended by considering other close predecessors such as previous siblings of C ′.
Another possibility is to consider leaves of the sub-tree of C ′. These possibilities
have been recently discussed in [5].

We demonstrate the class similarity adjustment on the PSM class Employer
from our sample PSM in Figure 3.2. From the previous iterations of the algo-
rithm we already have I(Country) = Country, I(WorkExperience) = Job, and
I(BusinessSector) = Field. Suppose the PIM class Company. Its distances from
the PIM classes Country, Job, and Field are 2, 1, and 1, respectively. On the
other hand, the distances of the PIM class Applicant are 2, 1, and 2, respectively.
Therefore, the adjustment is higher for the PIM class Company then for Appli-
cant. In this case, the adjustment helps. On the other hand, if the PSM class
BusinessSector is not present in the PSM, the adjustment can not distinguish

31

between both PIM classes.

Building Attribute Interpretation

Interpretation of PSM attributes of C ′ is computed at lines 7 - 19. For a PSM
attribute A′ ∈ attrs(C ′), I(A′) can be any PIM attribute from A. Therefore, the
algorithm measures the similarity between A′ and each PIM attribute A at line 9.
Again, the similarity is a weighted sum of the initial similarity Sinit−attr(A′, A) and
the reversed value of an adjustment to the initial similarity. The adjustment in
this case is simply a distance between I(C ′) and the class of A increased by 1. The
algorithm then offers the list of PIM attributes sorted by the computed similarity
to the expert who selects a correct interpretation of A′ at lines 11 and 12.

If I(C ′) 6= class(A) then class(I(A′)) = class(A) 6= I(C ′) = I(class′(A′))
which is inconsistent with the condition (1) of Definition 3.4. Therefore, we need
to create a new PSM class D′ ∈ C ′ such that I(D′) = class(A) and move A′ to
attrs′(D′) and put D′ as the beginning of content′(C ′) at lines 13 - 18.

Building Association Interpretation

Interpretation of PSM associations in content′(C ′) is computed at lines 20 - 22.
Suppose a PSM association R′ = (C ′1, C ′2) ∈ R′. The algorithm simply puts I(R′)
= P where P is the PIM path connecting I(C ′1) and I(C ′2) with the minimal
distance with respect to the chosen metric. This may of course be inaccurate
and therefore a domain expert should check the constructed interpretation and,
where necessary, change the represented PIM path.

Evolution of PIM

It may happen that there is no component inM suitable as an interpretation of
a given component in M′. A special case is when M is empty. There are two
possible solutions of this situation. The expert can (1) leave the interpretation of
the PSM component unspecified or (2) create a new component ofM which will
be the interpretation of the PSM component. The former would result into an
inconsistency with Definition 3.4 which requires the interpretation to be a total
function. Our full PSM meta-model introduces special constructs that also model
XML elements and attributes but have no interpretation and can be therefore
used in this case.

The other solution does not violate the consistency. When the PSM com-
ponent is a PSM class C ′, the algorithm creates a new PIM class C ∈ C with
name(C) = name′(C ′). When it is a PSM attribute A′, it creates a new PIM at-
tribute A ∈ A with name(A) = name′(A′), class(A) = I(class′(A′)), and type(A)
= type′(A′). When the PSM component is a PSM association R′, the algo-
rithm creates a new PIM association R ∈ R with association ends ends(R) =
{I(parent′(R′), I(child′(R′)).

3.5 Experiments
In this section, we briefly present some experimental results on building interpre-
tations of PSM classes. We have implemented the introduced method in our tool

32

0%

10%

20%

30%

40%

50%

60%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

 Global Precision

 Local Precision

Figure 3.5: PG and PL for Leaf PSM Classes

XCase2 which was primarily intended for designing XML schemas from a created
PIM. XCase can be downloaded with some experimental XML schemas. These
also include the experimental XML schema used in this section.

Let us suppose an actual PSM class C ′. Let the domain expert set I(C ′) to
a PIM class C. We measure the precision of the algorithm from two points of
view. Firstly, we measure the position of C in the list of PIM classes offered to
the expert sorted by their Sclass. We call this precision a global precision PG:

PG = ((
∑

C′∈C′
1− order(C)− 1

n
)/n′) ∗ 100

where n denotes the size of C, n′ denotes the size of C ′, and order(C) denotes the
order of C in the list. If there are more PIM classes with the same similarity to
C ′, order(C) is the order of the last one. PG = 0 (resp. 1) if for each PSM class
C ′, the selected PIM class was the last (resp. first).

The global precision is not sufficient. When C is the first class, there can be
other PIM classes before C which have their similarity to C ′ close to Sclass(C ′, C).
We therefore propose another metric called local precision which measures the
amount of PIM classes with their similarity to C ′ close to Sclass(C ′, I(C ′)). It is
defined as

PL = ((
∑

C′∈C′
1− close(C)− 1

n
)/n′) ∗ 100

where close(C) denotes the number of PIM classes with their similarity to C ′
close to Sclass(C ′, C). The term close similarity can be defined in various ways.
In this chapter, we say that y is close to x if y ∈ (x− 0.1, x+ 0.1).

We used our algorithm to build an interpretation of the PSM depicted in Fig-
ure 3.3 against the PIM depicted in Figure 3.1. The PSM was directly constructed
from EuropassSchema XML schema3 which is an official EU XML standard for
the employment domain. We tested various settings of weighting factors. We
show only the results related to PSM classes. We distinguish leaf PSM classes,
i.e. PSM classes with empty content, from inner PSM classes, i.e. PSM classes
with a non-empty content.

Figure 3.5 shows the global and local precision for leaf PSM classes when
wclass = 1 (it has no sense to consider the similarity adjustment as leaves have no
children). Various settings of the weighting factor winit−class are displayed at the
horizontal axis. The highest global precision is a little above 0.5, i.e. the average

2http://xcase.codeplex.com
3http://europass.cedefop.europa.eu/xml/CVLPSchema_V2.0.xsd

33

http://xcase.codeplex.com
http://europass.cedefop.europa.eu/xml/CVLPSchema_V2.0.xsd

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1

winit-class

wclass

Figure 3.6: PG for Inner PSM Classes

position of I(C ′) for a PSM class C ′ is somewhere in the middle of the offered
list. Moreover, the local precision shows that there were many PIM classes with
their similarity to C ′ close to Sclass(C ′, I(C ′)). The local precision grows with
winit−class, i.e. measuring similarity of the attributes of C ′ with the attributes of
PIM classes helped. The precision of the algorithm is not very good for leaf PSM
classes. This is also because we only used primitive similarity methods.

Figures 3.6 and 3.7 show global and local precision for inner PSM classes,
respectively. They show that we can reach much higher precision for inner PSM
classes then for leaves. This is because we can exploit the similarity adjustments
for the inner PSM classes. The former figure shows that we reached the highest
global precision for wclass ∈ [0.1, 0.3] and winit−class ∈ [0.1, 1]. In other words, it
shows that the similarity adjustment is important in our sample. This is because
PSM classes are not very similar on their names and attributes. The other figure
shows that there is only a small range of weighting factors where we can reach
a good local precision. This range is around wclass ∈ [0.2, 0.3] and winit−class ∈
[0.5, 1].

3.6 Conclusion
In this chapter, we studied mapping of XML formats to a conceptual schema.
We introduced a basic algorithm which allows to exploit various similarity mea-

34

0

0,1

0,2

0,3

0,4

0,5
0,6

0,7
0,8

0,9
1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
1winit-class

wclass

Figure 3.7: PL for Inner PSM Classes

surement methods. The algorithm also incorporates a domain expert into the
mapping process. In each iteration of the algorithm, the domain expert confirms
the discovered mappings. The algorithm exploits this decision to adjust the sim-
ilarities in following iterations. We have demonstrated on a simple experiment
with a real XML format that this idea works.

We have shown that the algorithm can be adapted by the chosen similarity
measurement techniques. We can also choose what part of the mapping already
approved by the expert is used to compute the similarity adjustments. In our
future work, we will experiment with various XML schemas and possible adap-
tations of the algorithm. We will also consider 1:n mappings and investigate the
possibility of incorporation of behavioral aspects of web services. We expect that
these adaptations will help in certain cases but will fail in others. Therefore, we
will also study if and how it is possible to adapt the algorithm during its runtime
on the base of its history.

35

36

4. A Framework for XML
Schema Integration via
Conceptual Model
Modern information systems may exploit numerous XML schemas for communi-
cation. Each schema represents a different XML format. This causes problems
with their integration and evolution. Manual integration and management of
evolution of the XML formats may be very hard. In this chapter, we experiment
with our novel method exploiting a conceptual schema and we present our results.
We introduce a framework which helps a domain expert to map the XML formats
to the conceptual schema. It can be configured to use various similarities of the
XML formats and the schema and it can adjust them on the basis of the input
from the expert. The result is a precise mapping. The schema then integrates
the XML formats and facilitates their evolution.

The content of this chapter was published as a workshop paper A Framework
for XML Schema Integration via Conceptual Model1 [57] in Web Information
Systems Engineering – WISE 2010 Workshops (WISE 2010).

4.1 Introduction
In our previous work (see Chapter 1 and Chapter 3) and in [86] a framework
for XML schema integration and evolution is introduced. It supposes a set of
XML schemas that are conceptually related to the same problem domain. As
a problem domain, we can consider, e.g., purchasing products. Sample XML
schemas may be XML schemas for purchase orders, product catalogue, customer
detail, etc. The central part of the framework is a conceptual schema which
specifies the problem domain. Each XML schema is then mapped to this schema,
i.e. XML schemas are integrated via the conceptual schema. This also facilitates
the evolution. A change in the domain is made only once in the conceptual
schema and propagated to the XML schemas.

Contributions In practice, a conceptual schema is usually developed during
an analysis and the XML schemas are developed separately by designers. There-
fore, there are no mappings between both levels. This disallows to exploit the
integration and evolution capabilities of our framework. In [86] a method for
deriving required XML schemas from the conceptual schema is introduced. How-
ever, it does not consider an existing XML schema that needs to be mapped to
the conceptual schema. In this chapter, we introduce a framework based on our
reverse-engineering algorithm introduced in Chapter 3 which allows to correctly
map a supplied XML schema to the conceptual schema semi-automatic way.

An important part of the method is measurement of similarity of the XML
schema and conceptual schema. In the recent research literature, there have been

1http://link.springer.com/chapter/10.1007/978-3-642-24396-7_8

37

http://link.springer.com/chapter/10.1007/978-3-642-24396-7_8

proposed various methods for measuring similarities of XML schemas or ontolo-
gies (see [41] for a comprehensive survey). Our aim is not to develop entirely new
similarity methods. Instead, we exploit the existing ones and combine them to-
gether. We also combine existing similarity methods with an active participation
of a domain expert.

Outline In Section 4.2 our framework for integration of XML schemas is pre-
sented. Section 4.3 contains metrics used to evaluate our approach. In Section 4.4
we experiment with various configurations of the framework. Section 4.5 summa-
rizes related work and Section 4.6 concludes.

4.2 Integration Framework
In this section, we introduce a framework which constructs an interpretation I of
a PSM schemaM′ against a PIM schemaM. It has three parts:

• PI measures initial similarities of components ofM′ andM.

• PII produces initial interpretation of a subset of components of M′ on
the basis of the initial similarities. The result is usually incomplete and
inaccurate.

• PIII constructs the final interpretation I ofM′ againstM on the basis of
interaction with the domain expert. The resulting interpretation is complete
and correct.

There are various algorithms for measuring similarities of two schema graphs
[41]. Our aim is not to develop new similarity measure. Instead, our framework is
configurable by these existing techniques. Possible configurations of the current
implementation are described in this section and summarized in the end of the
section in Table 4.3.

4.2.1 Similarity Functions in General
The framework exploits various types of similarity functions. Generally, a sim-
ilarity function is a function S : O × O′ → [0, 1] which assigns a real number
from the interval [0, 1] (i.e. including 0 and 1) to a pair of items from sets O and
O′. A similarity function may also be defined as a combination of other, simpler
similarity functions. Suppose similarity values s1, . . . , sn ∈ [0, 1]. The recent
literature [36] considers various combination methods, e.g.

• weighted sum, i.e. ∑n
i=1 wi ∗ si, where w1 + · · ·+ wn = 1 (c-4.2.1.1)

• minimum, i.e. minn
i=1 si (c-4.2.1.2)

• maximum, i.e. maxn
i=1 si (c-4.2.1.3)

The result of a combination is a composite similarity function. Each composite
similarity function will take one or more similarity values as an input, but we will
not specify their particular combination. Choosing a suitable combination is a
part of the configuration of the framework.

38

name(A) type(A) acard(A)
name′(A′) Sstr Sstr –
type′(A′) Sstr Stype –
acard′(A′) – – Scard

xml′(A′) Sstr Sstr –

Table 4.1: Basic possibilities for computing Sinit−attr

4.2.2 Auxiliary Similarity Functions
Firstly, we define several auxiliary similarity functions. A string similarity func-
tion Sstr assigns a similarity to a pair of strings. To compute Sstr, we can exploit
various methods introduced in the literature such as the longest common sub-
string, edit distance, or N -grams [30]. These basic methods may be extended
with semantic similarities based on, e.g. WordNet [77]. There have also appeared
methods that normalize strings by, e.g. expansion of shortcuts [124], which fur-
ther improve the precision of string similarity methods. On the other hand, a
data type similarity function Stype assigns a similarity to a pair of data types. To
compute Stype, we can also exploit various functions [70, 36] based on sub-typing
hierarchy, etc. Finally, a cardinality similarity function Scard assigns a similar-
ity to a pair of association cardinalities (i.e. intervals). To compute Scard, we
can consider various interval relation functions (e.g. interval inclusion, equivalent
lower cardinality, equivalent upper cardinality, etc.).

4.2.3 PI: Measuring Initial Similarities
PI measures similarities of each pair of attributes and each pair of classes from
M′ andM. This phase is fully automatic. Formally, it introduces two similarity
functions. An initial attribute similarity function Sinit−attr assigns a similarity to
each pair of attributes (A′, A) ∈ A′ × A. Analogously, an initial class similarity
function Sinit−class assigns a similarity to each pair of classes (C ′, C) ∈ C ′ × C.

For computing these two functions we can exploit various characteristics of
attributes or classes, respectively. An attribute from A is characterized by its
name, data type and cardinality. An attribute from A′ is moreover characterized
by its XML label. Therefore, Sinit−attr can be defined in various ways. Basically,
for (A′, A) ∈ A′ × A, it can be defined as the string similarity of the names
of both attributes, the type similarity of their types, or the string similarity of
the XML label of A′ and the name of A. We summarize basic possibilities in
Table 1(a). Naturally, they may be further combined into more complex ones.

Similarly, a class from C is characterized by its name and attributes. Moreover,
a class from C ′ has its XML label. For 〈C ′, C〉 ∈ C ′ × C, basic possibilities are
therefore again the string similarity of the names of both classes or the string
similarity of the XML label of C ′ and the name of C. Again, combinations are
possible. We can also combine initial similarities of the attributes of both classes.
See Table 1(b) for their list.

To compute initial similarities we could also exploit structural similarities of
the neighborhoods of the measured attributes and classes. Such possibilities were
discussed, e.g. in [5]. However, one needs to consider the fact that these struc-
tural similarities increase the time complexity. Moreover, as we will show, PIII

39

name(C) attrs(C)
name′(C ′) Sstr –
xml′(C ′) Sstr –
attrs′(C ′) – combination

of Sinit−attr

Table 4.2: Basic possibilities for computing Sinit−class

also operates with structural similarities which are based on more precise inputs.
Therefore, we do not consider measuring structural similarities for computing
initial similarity.

4.2.4 PII: Initial Interpretation Setup
PII sets initial class interpretations according to the initial class similarities pre-
computed in the previous step. It is a simple procedure that takes the most
similar pairs of PSM and PIM classes and sets these pairs as initial interpretations.
Formally, an initial class interpretation is a partial function I init : C ′ → C ′ which
maps a PSM class to a PIM class. We consider an initial interpretation threshold
t ∈ [0, 1]. For each class C ′ ∈ C ′, the framework takes the class C ∈ C with the
highest initial class similarity to C ′. If the similarity exceeds t, the framework
sets I init(C ′) = C. If there are more such classes in C, the framework takes an
arbitrary one. The threshold t is set by the domain expert. We present some
experiments with setting t in the following section.

4.2.5 PIII: Constructing Final Interpretation
The last part PIII of the framework traverses the classes in C ′ in pre-order and
helps the domain expert to build the interpretation. For a given class C ′ ∈ C ′,
it firstly constructs I(C ′), then it constructs I(A′) for each A′ ∈ attrs(C ′) and,
finally, I(R′) for each R′ ∈ content(C ′). In the rest of this section, we describe
the algorithm for PIII .

Constructing Class Interpretation

To construct I(C ′), the algorithm offers the list of classes from C to the domain
expert, who selects the optimal class C0 from the offered list. The algorithm
then sets I(C ′) = C0. Our goal is to sort the offered list so that C0 is as high as
possible in the list. In the optimal case, C0 is the first offered class. To sort the
list, we use the pre-computed initial similarities. Moreover, we adjust the initial
similarities by the already constructed part of I and by I init.

Formally, for each class C ∈ C the algorithm computes a class similarity. It is
a combination of the initial similarity of C ′ and C and so-called class similarity
adjustment of C ′ and C. The class similarity of C ′ and C is defined as follows:

Sclass(C ′, C) = wclass ∗ Sinit−class(C ′, C) + (1− wclass) ∗ Sadj−class(C ′, C)

where wclass ∈ [0, 1] and Sadj−class denotes the class similarity adjustment. The
class similarity adjustment Sadj−class(C ′, C) reflects the similarity of neighbor-
hood of C ′ and C and exploits the results of the previous steps of the algorithm

40

confirmed by the user. In particular, the algorithm has already constructed inter-
pretations of classes in C ′ which are before C ′ in the pre-order traversal. We will
use a function interpreted(C ′) which returns the set of these classes for C ′. There
are also zero or more classes in C ′ which are after C ′ in the pre-order traversal and
the initial class similarity I init was set for them during PII part of the framework.
We will use a function preinterpreted(C ′) which returns the set of these classes
for C ′.

Let D be a class from the set {I(D′) : D′ ∈ interpreted(C ′)} ∪ {I init(D′) :
D′ ∈ preinterpreted(C ′)}. We will measure the distance µ(C,D) between C
and D. There exist various ways of computing µ(C,D). E.g. having a function
paths(C,D) which returns the set of all PIM paths connecting C and D, it can
be defined as:

µ(C,D) = min
P =〈R1,...,Rn〉
∈paths(C,D)


n (c-4.2.5.1)
n/Scomp({Sstr(xml′(C ′), name(Ri))}n

i=1) (c-4.2.5.2)
n/Scomp({Sstr(xml′(C′),name(Ri))

(n−i+1) }n
i=1) (c-4.2.5.3)

where (c-4.2.5.1) takes the length of the shortest PIM path. (c-4.2.5.2) and (c-
4.2.5.3) consider similarities of the names of the associations along PIM paths
and the XML label of C ′. (c-4.2.5.3) also considers the position of the respective
association in the PIM path – the closer to C the association with a similar
name is, the higher is the resulting distance. There are other possibilities as well.
For example, we can use name of C ′ instead of its XML label or combine them
together.

Sadj−class(C ′, C) is then computed as a combination of the distances between
C and interpretations of classes from interpreted(C ′) ∪ preinterpreted(C ′). Even
though we can consider the whole interpreted(C ′) ∪ preinterpreted(C ′), we will
consider only the near neighbors of C ′. It is practical as considering the whole
set would increase the time complexity. Moreover, our hypothesis is that only
the close neighbors have impact on the similarity and with the growing distance
the impact declines. Formally, we will use the following functions:
nbhr-children(C ′) = {D′ : (∃R′ ∈ content(C ′))(D′ = child(R′))} (c-4.2.5.4)
nbhr-psiblings(C ′) = {D′ : content(parent(C ′)) = 〈R′1, . . . , R′n〉 ∧ (c-4.2.5.5)

(∃1 ≤ j < i ≤ n)(child(R′i) = C ′ ∧ child(R′j) = D′)}
nbhr-parent(C ′) = {parent(C ′)} ∩ preinterpreted(C ′) (c-4.2.5.6)

nbhr-fsiblings(C ′) = {D′ : content(parent(C ′)) = 〈R′1, . . . , R′n〉 ∧ (c-4.2.5.7)
(∃1 ≤ i < j ≤ n)(child(R′i) = C ′ ∧ child(R′j) = D′)}
∩ preinterpreted(C ′)

Informally, nbhr-children(C ′) returns the child classes of PSM class C ′ and
nbhr-psiblings(C ′) returns the previous sibling classes of C ′. Classes of both
types already have their interpretations because of the pre-order traversal of the
PSM. The function nbhr-parent(C ′) returns a set containing the parent class of
C ′ if I init of the parent has been set. The function nbhr-fsiblings(C ′) returns the
following sibling classes of C ′. Again, only those with the initial interpretation
are considered. Therefore, both nbhr-parent(C ′) and nbhr-fsiblings(C ′) may
return empty sets.

A configuration of the algorithm may choose any combination of the four
functions to target classes whose (initial) interpretations will be used to compute

41

Purpose Possible Configurations
Sstr String similarity see Section 4.2.2
Stype Data type similarity see Section 4.2.2
Sinit−attr Initial attribute similari-

ty
Basic possibilities in Table 1(a)
or their combinations, e.g. (c-
4.2.1.1), (c-4.2.1.2), or (c-4.2.1.3)

Sinit−class Initial class similarity Basic possibilities in Table 1(b)
or their combinations, e.g. (c-
4.2.1.1), (c-4.2.1.2), or (c-4.2.1.3)

t Initial interpretation
threshold

[0, 1]

µ Distance between classes
from C

e.g. (c-4.2.5.1), (c-4.2.5.2), or (c-
4.2.5.3)

I|C′ Selection of suitable
neighbors of C ′ for
computing Sadj

e.g. various unions of (c-4.2.5.4),
(c-4.2.5.5), (c-4.2.5.6), or (c-
4.2.5.7)

Scomp
adj−class Combination of reversed

values of distances be-
tween a class C ∈ C and
classes from I|C′

e.g. (c-4.2.1.1), (c-4.2.1.2), or (c-
4.2.1.3)

wclass Weighting factor of
Sinit−class and Sadj−class

for computing Sclass

[0, 1]

Table 4.3: Possible framework configurations

the adjustment Sadj−class(C ′, C). We will use I|C′ to denote the set of (initial)
interpretations of the classes returned by the selected configuration applied on
C ′.

We are now ready to formally define Sadj−class(C ′, C):

Sadj−class(C ′, C) = Scomp
adj−class({

1
µ(C,D)}D∈I|C′)

where Scomp
adj−class is a composite similarity function.

Constructing Attribute and Association Interpretation

To construct interpretation I(A′) of an attribute A′ ∈ attrs′(C ′), the algorithm
offers the list of attributes in I(C ′) sorted by their initial attribute similarity
with A′ to the domain expert. The domain expert selects the optimal attribute
A and the algorithm sets I(A′) = A. There may occur a situation when A is from
another class than I(C ′).

For an association R′ ∈ content(C ′), the algorithm directly sets I(R′) = P ,
where P is the PIM path connecting classes I(parent(R′)) and I(parent(R′))
with the minimal distance according to the selected distance metric µ. This
may be inaccurate and therefore a domain expert needs to check the constructed
interpretation and, where necessary, change the represented PIM path. However,
we do not discuss this process in a more detail in this chapter.

42

4.3 Measuring Quality

The key aspect of our approach is how to measure the quality of a given config-
uration of the framework. In particular, we target the quality of building class
interpretations in this chapter. We will not measure the quality of building at-
tribute and association interpretations due to the lack of space.

Suppose a class C ′ ∈ C ′. Let the domain expert set I(C ′) to a class C ∈
C. We measure the precision from two points of view. Firstly, we measure the
position of C in the list of classes offered to the expert sorted by Sclass. We call
this metric a global precision PG:

PG = ((
∑

C′∈C′
1− order(C)− 1

|C − 1|)/|C ′|)

where order(C) denotes the order of C in the list. If there are multiple PIM
classes with the similarity equivalent to C ′, order(C) returns the order of the last
one. PG = 0 (resp. 1) if for each class C ′ ∈ C ′, the selected I(C ′) was the last
(resp. first) one.

However, the global precision is not sufficient. When C is the first class,
there can be other classes after C in the sorted list with their similarity with
C ′ “close” to the similarity Sclass(C ′, C). Therefore we propose another metric
called local precision which measures the number of classes with their similarity
with C ′ “close” to Sclass(C ′, C):

PL = ((
∑

C′∈C′
1− close(C)− 1

|C − 1|)/|C ′|)

where close(C) denotes the number of PIM classes with their similarity to C ′
“close” to Sclass(C ′, C). The term close similarity can be defined in various ways.
In this chapter, we say that y is close to x if y ∈ (x− 0.1, x+ 0.1).

4.4 Experimental Evaluation

We have implemented a general framework which is fully configurable as described
in Section 4.2. In this section, we present selected interesting experimental results.
In particular, we present an experiment which tests various settings of I|C′ , i.e.
it shows the impact of selected neighborhood of a class C ′ ∈ C ′ on the computed
similarities. We will consider three experimental configurations C1, C2 and C3
with the following common settings:

43

Sstr The longest common substring
Stype Identity
Sinit−attr 0.5 ∗ Stype(type′(A′), type(A)) +

0.5 ∗ max{Sstr(name′(A′), name(A)), Sstr(xml′(A′), name(A))}

Sinit−class wiclass ∗
∑
A′∈attrs′(C′)

min
A∈attrs(C)

Sattr(A′,A)

|attrs′(C′)| +
(1 − wiclass) ∗ max{Sstr(name′(C ′), name(C)),
Sstr(xml′(C ′), name(C))}
where wiclass is a weighting factor from [0, 1]

µ (c-4.2.5.1)
Scombadj−class (c-4.2.1.1), where all weights are set to 1

|I|C′ |

wclass [0, 1]
The configurations differ as follows:

C1 C2 C3

t 0.5 0.5 0.5 or 0.75

I|C′ (c-4.2.5.4) (c-4.2.5.4) ∪ (c-4.2.5.5) (c-4.2.5.4) ∪ (c-4.2.5.5) ∪ (c-4.2.5.6) ∪ (c-4.2.5.7)

The configuration uses an additional weighting factor wiclass which is not fixed.
We also do not fix wclass and we will experiment with various settings of both of
them.

We will present experiments with our sample PIM and PSM and two real
world scenarios in the rest of this section. The results are presented in a form of
charts in Figures 4.1, 4.5 and 4.6. Each chart shows different settings of wclass on
the horizontal axis and achieved global and local precisions on the vertical axis.
Note that PG shortcut stands for global precision PG, PL means local precision
PL.

Experiments with Example Our first experiment shows the achieved pre-
cisions during the process of building interpretation of our sample PSM in Fig-
ure 4.3(b) against the sample PIM in Figure 4.2. The experiment shows that
event the classes in the sample schemas do not have very similar names, con-
sidering class similarity adjustment allows to achieve good results. The highest
precisions were achieved for wiclass = 0 and wiclass = 0.1 which are depicted in
Figure 4.1. This is natural as the class names in the example are not very similar.
wiclass = 0 (squares in the charts) means that we do not consider Sstr when we
compute Sinit−class. It means that the initial similarity is based only on Sattr.
wiclass = 0.1 (triangles in the charts) means that Sinit−class is influenced by Sstr

partially.
The difference between PG and PL in Figures 4.1(a) and 4.1(b) shows the

positive impact of involving nbhr-psiblings(C ′) in the result of Sadj−class. Fig-
ures 4.1(b) and 4.1(d) are equivalent, because only for PSM classes Customer and
ItemInfo the initial interpretation was set and they are neither following siblings,
nor parents of any other PSM class, so they can not contribute to Sadj−class. The
benefits of the initial interpretation can be clearly seen in Figure 4.1(c), where
t = 0.5. In that case, the initial interpretation is set for PSM classes Customer,
ItemInfo and OrderRequest which has a positive impact on the local precision.

Experiments with EuroPass. The second experiment is based on Europass
XML schema2 – an official EU XML standard for the employment domain. As

2http://europass.cedefop.europa.eu/xml/CVLPSchema_V2.0.xsd

44

http://europass.cedefop.europa.eu/xml/CVLPSchema_V2.0.xsd

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PG 0.0

PG 0.1

PL 0.0

PL 0.1

(a) C1

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) C2

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(c) C3 t = 0.5

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(d) C3 t = 0.75

Figure 4.1: Experiments with sample PIM and PSM

a PIM we used the schema depicted in Figure 4.4. It was manually constructed
from the Europass PSM. We have firstly converted each PSM component to a
corresponding PIM component. Then, we edited the resulting PIM to create
various name and structural mismatches.

This time wiclass = 0.6 was the best option. It means that we consider both
attribute and string similarities of PSM and PIM classes. In this case, the various
combinations of neighbors of the interpreted class influence PG only very slightly.
Nevertheless, we can see a significant improvements in PL in Figures 4.5(a) –
4.5(c). Figure 4.5(d) is same as Figure 4.5(b) because t = 0.75 is too high, so no
initial interpretations were set.

Experiments with OpenTravel. Finally, we experimented with the Open-
Travel standard 3 which provides a set of XML schemas for the travel community.
We have selected a particular XML schema 4 which specifies an XML format for
flight details. We derived a PSM from this XML schema. In the experiment, we
constructed an interpretation of the PSM against a PIM which was construct-
ed from another standard for flight details taken from FlightStats.com portal5.
Therefore, we obtained independent PSM and PIM and simulated a real situation.

The results of the experiment are depicted in Figure 4.6. The charts show
two settings of wiclass where we achieved highest global and local precisions. The
squares are for 0.7 and triangles are for 0.8. The charts again show how ex-
pansion of I|C′ with nbhr − psiblings(C ′) and initial interpretations, i.e. nbhr −

3http://opentravel.org
4http://opentravel.org/2009A/FS_OTA_AirDetailsRS.xsd
5https://www.flightstats.com/developers/bin/download/Web+Services/WSDL/

FlightAvailabilityService.xsd

45

http://opentravel.org
http://opentravel.org/2009A/FS_OTA_AirDetailsRS.xsd
https://www.flightstats.com/developers/bin/download/Web+Services/WSDL/FlightAvailabilityService.xsd
https://www.flightstats.com/developers/bin/download/Web+Services/WSDL/FlightAvailabilityService.xsd

Figure 4.2: A sample PIM

(a) Sample
PSM 1

(b) Sample PSM 2 and its partial DTD transla-
tion

Figure 4.3: Sample PSMs

fsiblings(C ′), and nbhr− parent(C ′), improves global as well as local precision.

4.4.1 Implementation Issues
In the description of our framework, we did not consider computational complex-
ity which, of course, needs to be taken into account when implementing specific
methods. For example, when computing the distance µ(C,D) of two PIM classes
C andD, we cannot get the actual set of all PIM paths between C andD, because
their number can be exponential with regard to the number of PIM associations.
However, we can still find, e.g., the shortest one (according to a weight function
like (c-4.2.5.1)) using, e.g., BFS (breadth-first search) or Dijkstra’s algorithm.
Unfortunately, this is not the case for functions (c-4.2.5.2) and (c-4.2.5.3), since
we need to have a whole PIM path to compute its length and all of them to pick
their minimum.

4.5 Related Work
The recent literature has focused on discovery of mappings of XML formats to a
common model. We can identify several motivations. Firstly, XML schemas are
hardly readable and a friendly graphical notation is necessary [42, 51, 133]. A

46

Figure 4.4: Europass PIM

survey of these approaches can be found in [137]. They introduce an algorithm
for automatic conversion of a given XML schema to a UML class diagram. The
result exactly corresponds to the given XML schema. However, these approaches
can not be applied in our case – we need to map an XML schema to an existing
conceptual schema.

Secondly, there are approaches aimed at an integration of a set of XML for-
mat into a common abstract XML format. These works include, e.g. the DIXSE
framework [116] or Xyleme project [115]. The mappings are discovered auto-
matically and can then be checked by a domain expert who can also specify
additional mappings manually [116]. These approaches are closer to our work.
However, they do not consider mapping of XML formats to a more general con-
ceptual schema and they do not consider a domain expert participating directly
in the mapping discovery process.

Last but not least, there are approaches that convert or map XML formats to
ontologies. For example, DTD2OWL [129] presents a simple method of automatic
translation of an XML format with a DTD into an ontology. More advanced
methods can be found in [40, 135]. All these approaches are close to ours since
a conceptual schema can be understood as an ontology. In the latter two cases,
the domain expert can edit the discovered mappings, but is not involved in the
discovery process directly.

Most of the approaches widely exploit research results of the schema-matching
community, where similarity of XML schemas is evaluated using syntactic and
semantic similarity of strings, structural similarities etc. [70, 17, 108] Surveys and
comparisons of these approaches can be found in [121, 41, 5]. The purpose of our
work is not to introduce new similarity methods, but to exploit and adapt existing
ones when mapping XML formats to the conceptual schema. We also extend these
methods with active participation of the domain expert and we have implemented
a framework that enables one to exchange the basic similarity measures with
advanced ones. In [87] an algorithm which discovers mappings of XML formats
to a conceptual schema was introduced. However, it was a theoretical paper
without implementation, the time complexity was too high and user interaction
was not possible easily. In this chapter, we introduced its optimization in all the

47

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PG 0.6

PL 0.6

(a) C1

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) C2

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(c) C3 t = 0.5

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(d) C3 t = 0.75

Figure 4.5: Experiments with EuroPass XML schema

mentioned weak points.

4.6 Conclusion
In this chapter we focused on one of the problems of MDA – finding the optimal
mapping between PIM and PSM levels. We implemented a general framework
which enables a user to find the mappings efficiently using similarity matching
which suggest the user the mapping candidates ordered by their relevance. The
framework enables one to select from various types of similarity metrics, combine
them using several possible strategies and further influence the process using
thresholds and continuous decisions. Using a set of experiments we showed that
this is a reasonable strategy, since various types of data require different settings.

48

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PG 0.7

PG 0.8

PL 0.7

PL 0.8

(a) C1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) C2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(c) C3 t = 0.5

Figure 4.6: Experiments with OpenTravel XML schema

49

50

5. XML Schema Integration with
Reusable Schema Parts
In this chapter, we complement our previous work in the area of XML schema
integration described in Chapter 3 and Chapter 4 with additional methods for
schema integration which exploit reusable schema parts that quite often appear
in XML schemas. This further helps a domain expert to get a precise mapping to
a conceptual schema, which then integrates the XML formats and facilitates their
evolution - a change that is made once in the conceptual schema is propagated
to the XML formats.

The contents of this chapter was published as a conference paper XML Schema
Integration with Reusable Schema Parts1 [56] in Dateso 2011 Annual International
Workshop on DAtabases, TExts, Specifications and Objects (DATESO 2011)

5.1 Introduction
Contributions In practice, a conceptual schema and XML schemas exist sep-
arately, i.e. there are no mappings between both levels. This disallows to exploit
the integration and evolution capabilities of our framework. In our work [96],
we have introduced a method for deriving required XML schemas from the con-
ceptual schema and in [60] and [57] we have described a reversed method for
mapping of an existing XML schema to the conceptual schema. In this chapter,
we extend this method by utilizing inheritance constructs that often appear in
XML schemas and that are supported by our conceptual model to get even better
results and more comfortable way of integrating them.

Outline The rest of the chapter is organized as follows. Section 5.2 briefly
describes the algorithm from Chapter 3 and Chapter 4 which assists a domain
expert during mapping discovery and we enhance it with methods for dealing
with inheritance. In Section 5.3, we evaluate the presented approach. Finally,
Section 5.4 concludes.

5.2 Algorithm
In this section we will enhance our interpretation reconstruction algorithm first
introduced in Chapter 3 and extended to a framework in Chapter 4 so that it takes
into account for reusable schema parts. These are represented in our conceptual
model as structural representants.

The algorithm builds an interpretation I of a PSM schema against a PIM
schema. I must be correct, it must fulfill Definition 3.4. Moreover, it must be
correct in the conceptual sense, i.e. a PSM component and its PIM interpretation
must conceptually correspond to the same real-world concept. We ensure the
formal correctness. The conceptual correctness is ensured by a domain expert.

1http://ceur-ws.org/Vol-706/paper03.pdf

51

http://ceur-ws.org/Vol-706/paper03.pdf

5.2.1 Overview
The basic algorithm works in three phases. Firstly, it measures initial similarities
between PSM and PIM attributes and classes. Secondly, it creates an initial
interpretation of PSM classes, whose initial similarity to some PIM class is higher
than a given threshold. Becasue this is done automatically, there is a possibility
that this initial interpretation is not correct. Therefore, it has to be verified
by a domain expert. Nevertheless, the initial interpretation usually helps to
avoid confirming lots of obvious mapping matches because the domain expert
just needs to confirm a list of pre-mapped classes (or uncheck the incorrect ones).
The confirmed initial interpretation now becomes a final interpretation and the
algorithm moves to its third phase. It builds interpretation of the unmapped
PSM classes with an assistance of a domain expert.

We will suppose a PSM schema S ′ and a PIM schema S on the input. The
output of the algorithm is an interpretation I of S ′ against S. We will enhance
parts of the algorithm where the knowledge of reusable schema parts (structural
representants) can help. But first, let us motivate a definiton. Let C ′ be a
structural representant of C ′′. Due to condition 2 of Definition 3.4, the following
must hold: I(C ′) = I(C ′′). This means that both C ′ and C ′′ need to have the
same interpretation in the PIM schema (or both must remain uninterpreted).
This also means (from condition 3 of Definition 3.4 and from the definition of
context ′(C ′)), that PSM attributes of C ′ and C ′′ can only have attributes of the
same PIM class as interpretation. Intuitively, C ′ and C ′′ represent the same
concept in the PSM schema and we can suppose that their names also refer to
the same concept. Note that the same goes for every PSM class C ′′′, that would
be a structural representant of C ′. This justifies the follwing definition.

Definition 5.1 Let a function ss′ : S ′c → 2(S′
c) return for each PSM class C ′

a set of PSM classes, which are (transitively) related to C ′ by the structural
representative (repr ′) relation.

For example, let C ′1, C ′2, C ′3 and C ′4 be PSM lasses. In addition, let repr ′(C ′1) = λ,
repr ′(C ′2) = C ′1, repr ′(C ′3) = C ′1 and repr ′(C ′4) = λ. Then ss′(C ′1) = ss′(C ′2) =
ss′(C ′3) = {C ′1, C ′2, C ′3} and ss′(C ′4) = ∅.

5.2.2 Measuring Initial Similarity
Attributes. Firstly, the algorithm measures a similarity for each pair of one
PIM and one PSM attribute. This is based on their names and datatypes. This
phase is not affected by the structural representants and we can skip the detailed
description. Suffice to say that results of initial attribute similarity are used in
function Sinit−attrs(C ′, C) below, which gives us similarity of a PSM class and a
PIM class based on their attributes.

Classes. Let (C ′, C) ∈ C ′ × C. The similarity between C ′ and C is customizable,
in this chapter it is a weighted sum

Sinit−class(C ′, C) = winit−class ∗ Sinit−attrs(C ′, C)
+ (1− winit−class) ∗ max{Sstr(name′(C ′),name(C)), Sstr(xml ′(C ′),name(C))}

52

where winit−class ∈ (0, 1) is a weighting factor and xml′(C ′) is a name of the par-
ent association of C ′ if any exists. Sinit−attrs(C ′, C) is defined as Sinit−attrs(C ′, C)
= ∑

A′∈attributes′(C′) maxA∈attributes(C) (Sinit−attr(A′, A)), i.e. it finds for each PSM
attribute A′ ∈ attributes′(C ′) the most similar PIM attribute A of C and sum-
marizes these similarities.

This is the first place where we can exploit structural representants. For a
PSM class C ′, we can take attibutes of every C ′′ ∈ ss′(C ′), because if those
classes have an interpretation, it is the same PIM class for all of them (and
similarly for the attributes). Therefore, we define function attrssr : S ′c → 2(S′

a) =
∪C′

i∈ss′(C′)attributes′(C ′i) and we can redefine:
Sinit−attrs(C ′, C) = ∑

A′∈attrssr (C ′) maxA∈attributes(C) (Sinit−attr(A′, A))

5.2.3 Initial interpretation
The initial class interpretations are set according to the initial class similari-
ties pre-computed in the previous step. It is a simple procedure that takes the
most similar pairs of PSM and PIM classes (with similarity greater than a given
threshold) and sets these pairs as initial interpretations. Here is another place
were we exploit structural representants. Because of the fact that all PSM classes
of ss′(C ′) need to have the same interpretaion (or none at all), when we initially
interpret one of them, we can as well initially interpret all of them and the in-
terpretation will be the same PIM class. And, of course, due to the possibility
that this interpretation is incorrect, we can provide the user with the comfort
of accepting/rejecting the whole group at once. If the domain expert chose to
consider structural representatives in both the attribute similarity and the name
similarity, this is an effect of the previous modification. The reason for this is that
all of the classes from the group will have the same initial similarities, because
when we computed the initial similarities for one class from the group, we includ-
ed all the other classes as well. If, however, the domain expert chose to ignore
structural representants at some stage, the similarities will be different and this
adjustment may come in handy.

5.2.4 Final Interpretation
The third part of the algorithm iteratively traverses the PSM classes in S ′c in
pre-order and helps the domain expert to build the final interpretation. Indi-
vidual steps are shown in Algorithm 2. For an actual PSM class C ′ ∈ S ′c, the
algorithm firstly constructs I(C ′) (lines 2 - 6) and also sets the interpretation
for all the PSM classes of ss′(C ′) (lines 7 - 9). This is because all of them must
have the same interpretation. Secondly, the algorithm constructs I(A′) for each
A′ ∈ attributes(C ′) (lines 10 - 22). Finally, it constructs I(R′) for each R′ ∈
content(C ′) (lines 23 - 25). It can be shown that this algorithm runs in O(N3)
where N is the number of PSM classes and in O(n×log(n)) where n is the number
of PIM classes.

Class Interpretation To construct I(C ′), the algorithm firstly computes sim-
ilarity Sclass(C ′, C) for each C ∈ S ′c at line 3. It is a weighted sum of two
similarities. The former is the initial similarity Sinit−class(C ′, C). The other is a

53

Algorithm 2 Interpretation Construction Algorithm
1: for all C ′ ∈ S ′c in post-order do
2: for all C ∈ Sc do
3: Sclass(C ′, C) ← wclass ∗ Sinit−class(C ′, C) +

(1− wclass) ∗ 1
Sadj−class(C′,C)

4: end for
5: Offer the list of PIM classes sorted by Sclass to the domain expert.
6: I(C ′)← C where C ∈ Sc is the PIM class selected by the domain expert.
7: for all C ′′ ∈ ss′(C ′) do
8: I(C ′′)← C {here we set the interpretation for the whole group of PSM classes}
9: end for
10: for all A′ ∈ attributes(C ′) do
11: for all A ∈ Sa do
12: Sattr(A′, A) ← wattr ∗ Sinit−attr(A′, A) +

(1− wattr) ∗ 1
µ(I(C′),class(A))+1

13: end for
14: Offer the list of PIM attributes sorted by Sattr to the domain expert.
15: I(A′)← A where A ∈ S ′a is the PIM attribute depicted by the domain expert.
16: if I(class′(A′)) 6= class(A) then
17: Create PSM class D′ ∈ S ′c; I(D′)← class(A)
18: Put A′ to attributes′(D′)
19: Create PSM association R′ = (C ′, D′) ∈ S ′r
20: Put R′ at the beginning of content′(C ′).
21: end if
22: end for
23: for all R′ ∈ content′(C ′) do
24: I(R′) ← P where P is the PIM path connecting I(C ′) and I(child ′(R′)) s.t.

µ(I(C ′), I(child ′(R′))) is minimal.
25: end for
26: end for

reversed class similarity adjustment Sadj−class(C ′, C) which we discuss in a while.
The algorithm then sorts the PIM classes by their similarity with C ′ and offers
the sorted list to the domain expert at line 5. The expert selects a PIM class
from the list and the algorithm sets I(C ′) to this selected class at line 6.

Class similarity adjustment Similarity adjustment Sadj−class(C ′, C) is com-
puted on the base of the completed part of I, which includes confirmed initial
interpretation. Sadj−class(C ′, C) is a combination of distances between C and PIM
classes Di which are interpretations of the interpreted neighbors of C ′. µ(C,D)
is the distance between PIM classes C and D.

Note that Algorithm 2 is a skeleton which needs to be supplemented with
methods for (1) measuring distances between PIM classes, (2) combining dis-
tances, and (3) selecting candidates for C ′ structural similarity adjustment. In
this chapter, we use basic methods to show that the general idea works. For
measuring the distance between two PIM classes C and D, we use the length
of the shortest PIM path connecting C and D. As the distance combination
method, which results in the aimed Sadj−class(C ′, C), we can also choose from
various possibilities. In this chapter, we use

Sadj−class(C ′, C) = (
n∑

i=1

µ(C, I(D′i))
n

) + 1

54

where D′1, . . ., D′n are the selected interpreted neighbors of C ′. Sadj−class(C ′, C) is
the average of the lengths of the shortest PIM paths between C and each I(D′i).

Finally, we need to decide which mapped neighbors of C ′ will be selected
to compute Sadj−class(C ′, C). We can choose among children of C ′ or previous
siblings of C ′, as these were already interpreted by the domain expert in this part
of the algorithm. Because we have some PSM classes interpreted via the initial
interpretation, we can use them as another candidates for structural similarity
adjustment, if they are close enough. Therefore, we can also select interpreted
following siblings, interpreted parent or interpreted ancestors as candidates for
structural similarity adjustment. These options are described and experimented
with in [57].

Here is another moment where we can exploit reusable schema parts in a form
of structural representants. As we choose which interpreted neighbors of C ′ to
use for the structural similarity adjustment, we can also work with the same type
of interpreted neighbors of all classes of the group ss′(C ′). The reasons are the
same, because the interpretation of all classes of the group must be the same
PIM class.

The rest of the algorithm remains unaffected by the structural representatives,
so we describe it only briefly. For details, see [60, 57]. When all the PSM classes
have been interpreted or the domain expert decided they should remain unin-
terpreted, a similar process is performed for PSM attributes of the classes. The
possibilities of mapping a PSM attribute in this situation are limited due to the
rules that the interpretation must adhere to (see Definition 3.4). Finally, PSM as-
sociations are interpreted with respect to the same rules.

5.3 Evaluation
In this section, we briefly evaluate the effect of structural representants on build-
ing interpretations of PSM classes. For more detailed experiments with the overall
method see [60, 57]. We have implemented the introduced method in our tool
XCase2 which was primarily intended for designing XML schemas from a created
PIM schema.

Let us suppose an actual PSM class C ′. Let the domain expert set I(C ′) to
a PIM class C either when asked or when confirming the initial interpretation.
We measure the precision of the algorithm from two points of view. Firstly, we
measure the position of C in the list of PIM classes offered to the expert sorted
by their Sclass. We call this precision a global precision PG:

PG = ((
∑

C′∈S′
c

1− order(C)− 1
n

)/n′) ∗ 100

where n denotes the size of Sc, n′ denotes the size of S ′c, and order(C) denotes
the order of C in the list. If there are more PIM classes with the same similarity
to C ′, order(C) is the order of the last one. PG = 0 (resp. 1) if for each PSM
class C ′, the selected PIM class was the last (resp. first).

The global precision is not sufficient. When C is the first class, there can be
other PIM classes before C which have their similarity to C ′ close to Sclass(C ′, C)

2http://xcase.codeplex.com

55

http://xcase.codeplex.com

and make it harder to distinguish whether C is or is not a good match for C ′.
We therefore propose another metric called local precision which measures the
amount of PIM classes with their similarity to C ′ close to Sclass(C ′, I(C ′)). It is
defined as

PL = ((
∑

C′∈S′
c

1− close(C)− 1
n

)/n′) ∗ 100

where close(C) denotes the number of PIM classes with their similarity to C ′
close to Sclass(C ′, C). The term close similarity can be defined in various ways.
In this chapter, we say that y is close to x if y ∈ (x− 0.1, x+ 0.1).

Intuitively, the effect of using structural representants is a reduction of the
number of mapping offers the domain expert needs to go through. This is because
when an interpretation of a PSM class C ′ is constructed, it is automatically
constructed for all PSM classes ss′(C ′) and the domain expert no longer needs to
create the interpretation for each one of them.

Additionally, the use of structural representants for class similarity computa-
tions may help with global and local precisions. This is, however, dependent on
the texts present in the source PSM schema, its structure and selected methods
of similarity measurements, which so far can not be determined automatically.
Therefore, the experimental results are very complex and their description would
not fit into this article.

5.4 Conclusion
In this chapter, we studied the effect of exploiting reusable schema parts on tech-
niques used for mapping of XML formats to a conceptual schema. We briefly
described our basic algorithm from [60, 57] which allows to exploit various simi-
larity measurement methods. Then we introduced our enhancements that allow
us to take advantage of the reusable schema parts, which are expressed as struc-
tural representants in our conceptual model. Finally, we have provided a brief
evaluation of the proposed method.

56

6. Refined Conceptual Model for
XML
In this chapter we refine the conceptual model for XML, which is the basis of
all the XML schema evolution work in this thesis. It can be described at the
conceptual level using a conceptual schema. We follow the MDD principle which
is based on modeling the application domain at several levels of abstraction. The
most abstract level we adopt in this thesis is the platform-independent level. It
contains the conceptual schema of the problem domain. The language applied to
express the conceptual schema is called platform-independent model (PIM) and
the conceptual schema is then called schema in the platform-independent model
(PIM schema). The level below is the platform-specific level which specifies how
the whole or part of the PIM schema is represented in a particular platform. In
our case, the platform is the XML. The language applied at this level is called
platform-specific model (PSM) and a schema expressed in this language is called
schema in the platform-specific model (PSM schema).

The content of this chapter is based on the refined conceptual model for XML
as defined using the Regular Tree Grammars [81] formalism and published in
our impacted journal paper When Conceptual Model Meets Grammar: A Dual
Approach to XML Data Modeling1 [96] - Data & Knowledge Engineering (DKE).
The form present in this chapter was published as a part of another impacted
journal paper [89] which is in Chapter 8. Because other contributions use this
version of the conceptual model too, we present it as a separate chapter.

6.1 Platform-Independent Model
A schema in the platform-independent model (PIM) models real-world concepts
and the relationships between them without any details of their representation
in a specific data model (XML in our case). As a PIM, we use the classical
model of UML class diagrams [101, 102]. For simplicity, we use only its basic
constructs: classes, attributes and binary associations. UML is widely supported
by the majority of tools for data engineering and the XMI [105] standard is used
for exchanging diagrams between them; it is, therefore, natural to use UML in
our approach as well.

Definition 6.1 A platform-independent schema (PIM schema) is a triple S =
(Sc,Sa,Sr) of disjoint sets of classes, attributes, and associations, respectively.

• Class C ∈ Sc has a name assigned by function name.

• Attribute A ∈ Sa has a name, data type and cardinality assigned by func-
tions name, type, and card, respectively. Moreover, A is associated with a
class from Sc by function class.

• Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are called
association ends of R. R has a name assigned by function name. Both E1

1http://dx.doi.org/10.1016/j.datak.2011.09.002

57

http://dx.doi.org/10.1016/j.datak.2011.09.002

and E2 have a cardinality assigned by function card and are associated with
a class from Sc by function participant. We will call participant(E1) and
participant(E2) participants of R. name(R) may be undefined, denoted by
name(R) = λ.

For a class C ∈ Sc, we will use attributes (C) to denote the set of all attributes
of C, i.e. attributes (C) = {A ∈ Sa : class(A) = C}. Similarly, associations (C)
will denote the set of all associations with C as a participant, i.e. associations (C)
= {R ∈ Sr : (∃E ∈ R)(participant(E) = C)}.

PIM schema components have usual semantics: a class models a real-world
concept, an attribute of that class models a property of the concept, and, an
association models a kind of relationships between two concepts modeled by the
connected classes. A sample PIM schema modeling our sample domain of prod-
ucts being sold is depicted in Figure 6.1. We display PIM schemas as UML class
diagrams. We omit displaying data types of class attributes. When a cardinality
of a class attribute or association endpoint is not displayed, it is 1..1 by default.

Figure 6.1: PIM schema modeling the domain of selling products

6.2 Platform-Specific Model
A schema in the platform-specific model (PSM) describes how a part of the reality
modeled by the PIM schema is represented with a particular XML schema. For
each aimed XML schema a separate PSM schema is created. As a PSM we use
UML class diagrams extended for the purposes of XML modeling. The extension
is necessary because of several specifics of XML (such as hierarchical structure or
distinction between XML elements and attributes) which cannot be modeled by
standard UML constructs.

Definition 6.2 A platform-specific schema (PSM schema) is a 5-tuple S ′ =
(S ′c,S ′a,S ′r,S ′m, C ′S′) of disjoint sets of classes, attributes, associations, and con-
tent models, respectively, and one specific class C ′S′ ∈ S ′c called schema class.
• Class C ′ ∈ S ′c has a name assigned by function name.

• Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form as-
signed by functions name, type, card and xform, respectively. xform(A′)
∈ {e, a}. Moreover, it is associated with a class from S ′c by function class
and has a position assigned by function position within the all attributes
associated with class(A′).

58

• Association R′ ∈ S ′r is a pair R′ = (E ′1, E ′2), where E ′1 and E ′2 are called as-
sociation ends of R′. Both E ′1 and E ′2 have a cardinality assigned by function
card and each is associated with a class from S ′c or content model from S ′m
assigned by function participant, respectively. We will call participant(E ′1)
and participant(E ′2) parent and child and will denote them by parent(R′)
and child(R′), respectively. Moreover, R′ has a name assigned by function
name and has a position assigned by function position within the all asso-
ciations with the same parent(R′). name(R′) may be undefined, denoted by
name(R′) = λ.

• Content model M ′ ∈ S ′m has a content model type assigned by function
cmtype. cmtype(M ′) ∈ {sequence, choice, set}.

The graph (S ′c ∪ S ′m,S ′r) must be a forest2 of rooted trees with one of its trees
rooted in C ′S′. For C ′ ∈ S ′c, attributes (C ′) will denote the sequence of all at-
tributes of C ′ ordered by position, i.e. attributes (C ′) = (A′i ∈ S ′a : class(A′i) =
C ′ ∧ i = position(A′i)). Similarly, content (C ′) will denote the sequence of all
associations with C ′ as a parent ordered by position, i.e. content (C ′) = (R′i ∈
S ′r : parent(R′i) = C ′∧ i = position(R′i)). We will call content (C ′) content of C ′.
With anc(X ′) we will denote the set of all ancestor classes of a component X ′ in
S ′.

To distinguish PIM components from PSM components, we strictly use a
notation without the ’ symbol for PIM components (e.g. class Purchase) and
notation with the ’ symbol for PSM components (e.g. class Purchase’). Before
showing sample PSM schemas, we explain the semantics of the PSM constructs.
We view a PSM schema S ′ from two perspectives: grammatical and conceptual.
From each perspective, the constructs have a different semantics.

From the conceptual perspective, S ′ is mapped to a PIM schema S and models
the same part of the reality as S. More precisely, some classes, attributes and
associations of S ′ are mapped to some classes, attributes, and associations of S,
respectively. These mapped components of S ′ model exactly the same part of
the reality as do their corresponding counterparts in S. The rest of S ′ has no
semantics from the conceptual perspective.

From the grammatical perspective, S ′ models an XML schema. Its components
model XML attributes and XML elements, and their structure. We summarize
XML constructs modeled by PSM constructs in Table 6.1. Formally, S ′ unam-
biguously models a regular tree language which can be specified by a regular tree
grammar [81]. However, this formalism is not a part of this thesis. For the details
on the modeled regular tree language and formal proofs of unambiguity we refer
to our previous work [92], where we proved that our PSM is equivalent to regular
tree grammars. In other words, it can be equivalently used as an XML schema
language. We showed how a PSM schema can be unambiguously translated to
an expression in a selected XML schema language and vice versa. The important
consequence of our previous results for this chapter is that we can abstract our
evolution mechanism from particular XML schema languages and work only at
the PSM level.

2Note that since S ′ is a forest, we could model R′ directly as a pair of connected components.
However, we use association ends to unify the formalism of PSM with the formalism of PIM.

59

PSM construct Modeled XML construct
C ′ ∈ S ′c Complex content which is a sequence of XML

attributes and XML elements modeled by at-
tributes in attributes (C ′) followed by XML at-
tributes and XML elements modeled by associa-
tions in content (C ′)

A′ ∈ S ′a, where
xform(A′) = a

XML attribute with name name(A′), data type
type(A′) and cardinality card(A′)

A′ ∈ S ′a, where
xform(A′) = e

XML element with name name(A′), simple content
with data type type(A′) and cardinality card(A′)

R′ ∈ S ′r, where
name(R′) 6= λ

XML element with name name(R′), complex con-
tent modeled by child(R′) and cardinality card(R′).
If R′ ∈ content (C ′S′), R′ models a root XML ele-
ment

R′ ∈ S ′r, where
name(R′) = λ

Complex content modeled by child(R′)

M ′ ∈ S ′m and
cmtype(M ′) = sequence
(or choice or set)

Complex content which is a sequence (or choice
or set, respectively) of XML attributes and XML
elements modeled by associations in content (C ′)

Table 6.1: XML attributes and XML elements modeled by PSM constructs

If we put both perspectives together, the PSM schema S ′ specifies how the
corresponding part of the PIM schema S is represented in the XML schema. In
other words, it specifies how a part of the real world modeled by S is represented
in XML documents valid against the XML schema. Conversely, it specifies the
semantics of the XML schema in terms of S, i.e. the semantics of a particular
XML document in terms of the PIM schema.

Three sample PSM schemas are depicted in Figure 6.2. We display PSM
schemas as UML class diagrams with some extended notation. First, they are
displayed in a tree layout; attributes and associations are sorted in the order
given by position. Second, attributes with XML form a are displayed with the @
symbol. Third, sequence, choice and set content models are displayed as rounded
boxes with an inner symbol ..., | or {}, respectively.

From the conceptual perspective, our sample PSM schemas are mapped to
a part of the PIM schema in Figure 6.1. We display the components mapped
to the PIM schema in the sea shell color. The mapping is intuitive3 and we do
not display it explicitly. The components which are not mapped are displayed
in grey. For example, the PSM class Purchase’ in Figure 6.2 (a) is mapped
to the PIM class Purchase. In other words, the semantics of Purchase’ is the
same as the semantics of Purchase which models purchases. Similarly, attribute
name’ of class Customer’ is mapped to name of class Customer. Association
cust’ connecting classes Purchase’ and Customer’ is mapped to association
makes connecting classes Purchase and Customer. On the other hand, PSM
class Contact’ is not mapped to the PIM schema. In other words, it has no
semantics from the conceptual point of view. Similarly, the association with
Contact’ as child is not mapped. And, attribute version’ of Purchase’ is not

3The reader may deduce it from their names which intuitively suggest the mapping

60

Figure 6.2: PSM schema modeling (a) XML format for purchase requests received
from customers, (b) XML format for purchase responses sent to customers, (c)
components shared by other PSM schemas

mapped as well. These non-mapped components have no semantic meaning from
the conceptual point of view.

From the grammatical perspective, the PSM schema depicted in Figure 6.2 (a)
models an XML schema for purchase requests sent by customers to our system.
A sample XML document formatted according to this XML schema is depicted
in Figure 6.3. The hierarchical structure of the XML schema is modeled by
the associations of the PSM schema. As can be seen from the example, each
named association models an XML element whose cardinality is given by the child
cardinality of the association. For example, association items’ which connects
classes Purchase’ and Items’ models XML element items with cardinality 1..1.
Association item’ which connects classes Items’ and Item’ models XML element
item with cardinality 1..*. Moreover, when such association is in the content
of the schema class, it models root XML elements. In our case, association
purchaseRQ’ models XML elements purchaseRQ which are root XML elements
of the modeled XML format. An association without a name models only the
nesting of XML content. For example, association ItemProduct’ which connects
classes Item’ and Product’ does not model any XML element. It specifies that
the XML content modeled by its child is a part of the XML content modeled by
its parent. An attribute models an XML element or XML attribute depending
on its XML form. An attribute with XML form = a models XML attribute and
is depicted by the additional symbol @. An attribute with XML form = e models
XML element and is depicted without any additional symbol. Again, cardinality
is given by the attribute cardinality. For example, attribute version’ of class
Purchase’ models a mandatory XML attribute version. Attribute name’ of
class Customer’ models a mandatory XML element name which can be repeated.

Sometimes, classes in one or more PSM schemas may share the same attributes
and/or part of their content. Instead of repeating them at several places, we
introduce structural representatives which allow for attribute and content reuse.
If a class C ′ in a PSM schema is a structural representative of another class D′
from the same or another PSM schema, C ′ “inherits” the attributes and content
of D′. From the grammatical perspective, C ′ models the same XML attributes

61

<purchaseRQ version="1.0">
 <cust partner-code="PA1">
 <name>Martin Necasky</name>
 <email>necasky@...</email><address>Malostranske nam. 25, Praha, Czech Republic</address>
 </cust>
 <items>
 <item tester="true"><code>P001</code><title>Sample for testing</title></item>
 <item><code>P002</code><title>Umbrella</title><price>100</price><amount>2</amount></item>
 </items>
</purchaseRQ>

Figure 6.3: Sample purchase request represented in the XML format modeled by
the PSM schema depicted in Figure 6.2 (a)

as D′ followed by its own modeled XML attributes followed by XML elements
modeled by D′ and, finally, followed by its own modeled XML elements.

Definition 6.3 Let S ′ = (S ′c,S ′a,S ′r,S ′m, C ′S′) be a PSM schema and C ′ be a class
from S ′c. C ′ may be a structural representative of another class D′ in S ′c which is
assigned to C ′ by function repr (repr(C ′) = D′). If repr(C ′) is undefined, denoted
by repr(C ′) = λ, we say that C ′ is not a structural representative of any class.
Let repr∗(λ) = {} and repr∗(C ′) = {repr(C ′)}∪ repr∗(repr(C ′)) where C ′ 6= λ. It
must hold that C ′ 6= repr∗(C ′).

A structural representative C ′ of repr(C ′) is displayed as a class with a blue
background and the name of repr(C ′) above its own name. For example, class
Product’ from Figure 6.2 (a) and class Product’ from Figure 6.2 (b) are both
structural representatives of class ProductBase from the PSM schema depicted
in Figure 6.2 (c). From the grammatical perspective they both model the same
XML fragment as the latter one. Note that the PSM schema in Figure 6.2 (c)
does not model any XML documents (because it does not have any named as-
sociation going from the schema class and, therefore, does not model any root
XML elements). It acts as an auxiliary PSM schema which contains components
shared by other PSM schemas via the mechanism of structural representatives.

In the rest of this section we further formalize the conceptual perspective. A
formal model of the grammatical perspective is provided in [92] and we omit it
in this chapter.

6.3 Formal Model of Conceptual Perspective
Formally, the conceptual perspective of a PSM schema is expressed as a mapping
of the PSM schema to the PIM schema. Before we introduce the mapping, we
introduce an auxiliary notion of a directed image of an association from a PIM
schema which we use in the following definitions.

Definition 6.4 Let R = {E1, E2} be an association in a PSM schema S. The
directed images of R are RE1 = (E1, E2) and RE2 = (E2, E1) . We will denote the
set of all directed images of S as −→Sr, i.e.

−→
Sr = {RE1 , RE2 : R = {E1, E2} ∈ Sr}.

Now, we are ready to introduce the formalism of mappings. We call the
mapping of the PSM schema to the PIM schema interpretation of the PSM schema
against the PIM schema.

62

Definition 6.5 An interpretation of a PSM schema S ′ against a PIM schema
S is a partial function I : (S ′c ∪ S ′a ∪ S ′r) → (Sc ∪ Sa ∪

−→
Sr) which maps a

class, attribute or association from S ′ to a class, attribute or directed image of
an association from S, respectively. For X ′ ∈ (S ′c ∪ S ′a ∪ S ′r), we call I(X ′)
interpretation of X ′. I(X ′) = λ denotes that X ′ does not have an interpretation.
In that case we will also say that X ′ has an empty interpretation.

An arbitrary interpretation of a PSM component would lead to inconsistencies
between the semantics of the PIM schema and the semantics of the PSM schema
given by the interpretation. This would result in ambiguities in the semantics of
PSM schemas. For example, suppose the class Product’ and its attribute code’
from our sample PSM schema depicted in Figure 6.2 (a). Let the interpretation of
Product’ be the PIM class Product. Therefore, code’, from the conceptual per-
spective, belongs to Product. On the other hand, suppose that code’ is mapped
to the PIM attribute code of PIM class Purchase. From this, code’ belongs to
Purchase which is in contradiction with the previous conclusion. We, therefore,
need the interpretation to meet certain rules which prevent these ambiguities.

Before we introduce the rules, let us define the notion of interpreted context
of a PSM component.

Definition 6.6 Let X ′ be a component of a PSM schema S ′. Let I be an in-
terpretation of S ′ against a PIM schema S. The interpreted context of X ′ with
respect to I is denoted intcontext(X ′) and

• intcontext(X ′) = X ′ when X ′ ∈ S ′c and I(X ′) 6= λ

• intcontext(X ′) = C ′ when X ′ 6∈ S ′c or I(X ′) = λ, where C ′ is the closest
ancestor class to X ′ s.t. I(C ′) 6= λ.

As the definition shows, the interpreted context of each PSM component X ′
is X ′ itself if it is a class with an interpretation. In other cases, it is the closest
ancestor class to X ′. Let us demonstrate the notion of interpreted context on our
sample PSM schema depicted in Figure 6.2 (a). The interpreted context of class
Customer′ is class Customer′ itself (intcontext(Customer′) = Customer′), because
I(Customer′) 6= λ. The interpreted context of attribute name′ of class Customer′

is class Customer′ as well (intcontext(name′) = Customer′), because Customer′

is the closest ancestor class to name′ which has an interpretation. And, for the
same reason, the interpreted context of association connecting classes Customer′

and Partner′ is class Customer′. On the other hand, class Contact′ does not
have an interpretation (I(Contact′) = λ). The closest ancestor class with an
interpretation is class Customer′. Therefore, intcontext(Contact′) = Customer′.
Similarly, intcontext(ItemTester′) = intcontext(ItemPricing′) = Item′. And the
same is for attributes, for example intcontext(tester′) = Item′.

Note that intcontext(X ′) may be empty, i.e. intcontext(X ′) = λ. In that case
we will say that X ′ does not have an interpreted context. Thus, having the notion
of interpreted context, we are ready to introduce the rules.

We now define the notion of consistent interpretation of a PSM schema against
a PIM schema. Consistency ensures that the semantics of the PSM schema
determined by the interpretation is consistent with the semantics modeled by the
PIM schema.

63

Definition 6.7 Let I be an interpretation of a PSM schema S ′ against a PIM
schema S. We say that I is consistent if the following rules are satisifed:

(∀C ′ ∈ S ′c s.t. repr(C ′) 6= λ ∧ I(C ′) 6= λ)(I(C ′) = I(repr(C ′))) (6.1)
(∀A′ ∈ S ′a s.t. I(A′) 6= λ) (6.2)

(intcontext(A′) 6= λ ∧ I(A′) ∈ attributes(I(intcontext(A′))))
(∀R′ ∈ S ′r s.t. I(child(R′)) = λ ∨ I(intcontext(R′)) = λ)(I(R′) = λ) (6.3)
(∀R′ ∈ S ′r s.t. I(child(R′)) 6= λ ∧ intcontext(R′) 6= λ) (6.4)

(I(R′) = (E1, E2) s.t. participant(E1) = I(intcontext(R′))
∧ participant(E2) = I(child(R′)))

Condition (1) requires that a structural representative C ′ of a class repr(C ′)
has the same interpretation as repr(C ′). This is because C ′ acquires the attributes
and content of repr′(C ′). To ensure consistency, the attributes and associations
in the content must semantically remain with C.

Condition (2) requires that when an interpreted attribute A′ has an interpret-
ed context C ′, then I(A′) must be an attribute of I(C ′). In other words, A′ must
semantically belong to the interpretation of its interpreted context.

Conditions (3) and (4) ensure consistency of associations. Condition (3) re-
quires that only an association with an interpreted child and interpreted context
may have an interpretation. This is because the semantics of an association speci-
fies how instances of the child of the association are connected to their interpreted
context. For associations with interpretation, condition (4) is applied. It is simi-
lar to (2). If an association R′ has an interpreted context with interpretation C
and its child has an interpretation D, the interpretation of R′ must be an ordered
image of an association connecting C and D.

Let us demonstrate conditions (2)-(4) on the PSM schema depicted in Fig-
ure 6.2 (a). First, suppose attribute tester′. Its interpreted context is class Item′

with I(Item′) = Item. Condition (2) requires that I(tester′) ∈ attributes (Item).
This is satisfied in our case because I(tester′) = tester. Second, suppose the
association connecting classes Customer′ and Contact′. Since I(Contact′) = λ,
condition (3) requires that the association does not have an interpretation. This
is natural, because both Contact′ represents a part of class Customer from the
conceptual perspective and, therefore, it is meaningless to specify the semantics of
the association. On the other hand, the association connecting classes Customer′

and Partner′ must have an interpretation, because both classes have an interpre-
tation and it is necessary to specify the semantics of the connection between them.
The interpretation must be an association connecting Customer and Partner ac-
cording to condition (3). In our case it is the association responsibility which
is correct.

The following lemma shows that Definition 6.7 is correct.

Lemma 6.1 Let I be a consistent interpretation of a PSM schema S ′ against a
PIM schema S. The semantics of each component of S ′ specified by I is unam-
biguous.

Proof 6.1 We will show that the semantics of each PSM class, attribute or asso-
ciation in S ′ is specified unambiguously by I. Without loss of generality, we will
consider components of S ′ which are semantically related to a PIM class C ∈ Sc.

64

First, let C ′ ∈ S ′c s.t. I(C ′) = C. The semantics of C ′ is specified by I
unambiguously from Definition 6.5. There is no way to use I to deduce that the
semantics of C ′ is a class C0 6= C.

Second, let A′ ∈ S ′a s.t. I(A′) 6= λ. Let C ′A ∈ S ′c s.t. C ′A = class(A′) or
repr(C ′A) = class(A′). Let I(intcontext(C ′A)) = C. If I(A′) 6∈ attributes (C), the
semantics of A′ is ambiguous. From the conceptual perspective, A′ semantical-
ly belongs to C on one hand and it does not on the other. However, I(A′) 6∈
attributes (C) cannot happen because of conditions (1) and (2).

Third, let R′ ∈ S ′r s.t. I(R′) 6= λ is a directed image of an association R ∈ Sr.
Let C ′R ∈ S ′c s.t. C ′R = parent(R′) or repr(C ′R) = parent(R′) or C ′R = child(R′) (in
this last case, condition (4) ensures that I(C ′R) 6= λ and, therefore, intcontext(C ′R)
= C ′R). Let I(intcontext(C ′R)) = C. If R 6∈ associations (C), the semantics of R′
is ambiguous. From the conceptual perspective, R′ is an association connected to
C on one hand and it is not on the other. However, R 6∈ associations (C) cannot
happen because of conditions (1) and (3).

In the rest of this thesis, each interpretation considered will be consistent; we
do not consider inconsistent interpretations.

65

66

7. Model-Driven Approach to
XML Schema Evolution
In this chapter, we briefly present a novel approach to evolution of families of
XML schemas. It is based on the conceptual model for XML (see Chapter 6). The
designer performs a change only once in the conceptual schema and our introduced
mechanism propagates the change to all affected XML schemas. Propagation
from the XML schema to the conceptual level is also supported. For a detailed
description of the approach see Chapter 8.

Together with Chapter 1, this is the preliminary work in the area of XML
schema evolution. It provides an overview of our approach. In Chapter 8 we go
into greater detail.

The contents of this chapter was published as a workshop paper Model-Driven
Approach to XML Schema Evolution1 [95] in On the Move to Meaningful Internet
Systems: OTM 2011 Workshops.

7.1 Introduction
In conceptual modeling for XML [86], the aim is at the problem of designing XML
schemas of XML vocabularies. The introduced technique exploits the fact that
a vocabulary is usually related to a common data domain, e.g. travel, health
care or public procurement. Therefore, a conceptual schema of the domain is
firstly designed. Each XML schema is then modeled as a specific view of the
conceptual schema. In this chapter, we aim at the problem of evolving the XML
schemas as user requirements change. A new user requirement may have an
impact on several XML schemas in the vocabulary. The designer, therefore,
has to identify the impacted XML schemas and determine how they must be
evolved. It is a widespread practice today to deal with this task at the level
of separate XML schemas expressed in an XML schema language such as DTD
or XML Schema. However, this may be very difficult in case of complex XML
vocabularies. Also manual identification of the affected parts is not easy in case
of tens or even hundreds of schemas. In this chapter we introduce a technique
based on describing the required changes at the common conceptual level and
semi-automatic propagation of the changes to the affected XML schemas.

The chapter is structured as follows. Section 7.2 is motivating. In Section 7.3,
we introduce atomic operations for schema evolution. In Section 7.4, we introduce
the propagation mechanism. In Section 7.5, we evaluate the introduced approach.
Section 7.6 concludes.

7.2 Motivation
Let us discuss the evolution problem on two scenarios. First, a designer creates
a new family of XML schemas which has not been deployed in a run-time envi-
ronment yet. He iterates in several iterations before an acceptable version of the

1http://link.springer.com/chapter/10.1007/978-3-642-25126-9_63

67

http://link.springer.com/chapter/10.1007/978-3-642-25126-9_63

XML schemas is prepared to be deployed. He needs a mechanism which shows an
impact of each change to the unfinished XML schemas and helps to propagate the
change to the XML schemas. Because the XML schemas have not been deployed
yet, there are no XML documents. Therefore, it is not necessary to propagate
the changes to the XML document level. The second scenario is adapting an
existing family of XML schemas which have already been deployed in a run-time
environment. In this scenario it is necessary to consider XML documents as well.
Such scenario usually occurs when new or changed requirements need to be im-
plemented in the running system (e.g. a change in legislation). A technique for
propagation of evolution changes from XML schemas to XML documents using
XSLT scripts generated using the approach described in this chapter is published
in [71]. In this chapter, we aim at propagation of changes between the conceptu-
al schema and XML schemas bounded to that conceptual schema. For this, we
consider a set of atomic operations which are incrementally applied by the design-
er to the schemas and appropriately propagated by our mechanism between the
conceptual and XML schema levels. The current literature considers addition, re-
moval, migratory, and sedentary operations for schema evolution. However, they
are not sufficient, because they do not keep the semantic relationships between
existing and newly created schema components. We demonstrate the problem
on an example. Let us have a class Customer. Its attributes line1 and line2
represent a customer’s address. Later, the users require a precise differentiation
of street, city and country. Therefore, the designer creates new respective at-
tributes street, city and country, and removes the old ones. It is clear that
the semantic relationship between the old and new attributes is lost when using
only the creation and removal operations. It results in loosing of the respective
data that should be transformed accordingly. Therefore, we need an operation
which enables to explicitly specify the semantic equivalence between two sets of
schema components. There are two possible ways of doing that. The simpler
one is to denote that the sets are semantically equivalent without specifying how.
The more complex way is to moreover describe the equivalence at the data level
in a form of a query expression in a suitable language. The second approach is
necessary when adapting XML documents. Since we are now interested only in
adapting XML schemas, we adopt the first approach and we introduce a new kind
of operations called synchronizing operations.

7.3 Operations
In this section, we introduce atomic operations for PIM and PSM schema evo-
lution. We provide their examples and describe the most interesting ones. Note
that the atomic operations serve as a formal basis for creating more user-friendly
operations composed of the atomic ones. Full details of all atomic operations and
how composite operations can be constructed can be found in [90]. In the next
section, we describe how atomic operations performed at one level (PIM or PSM)
are propagated to the atomic operations at the other level (PSM or PIM, respec-
tively). Any operation composed of the atomic ones is automatically propagated
as a sequence of corresponding atomic operations.

Atomic operations for PIM schema evolution provide a formal way of changing
the PIM schema. Their examples (affecting classes and attributes) are listed in

68

Tab. 7.1. There are similar operations for associations. The definitions contain
preconditions for some operations (p:). An addition operation creates a new
component and sets its name, type and cardinality to default values configured
by the designer. A sedentary operation updates a name, data type, etc. The
precondition of the class removal operation ensures that a class is not removed
when it has attributes or connected associations.

Operation Kind Effect
C = αc() Addition Adds a new class C.
A = αa(C) Addition Adds a new attribute A to an existing

class C.
δc(C) Removal Removes an existing class C.

p: attributes(C) = ∅∧associations(C) =
∅

δa(A) Removal Removes an existing attribute A.
υ

name|type|card
a (A, v) Sedentary Updates the name, type, or cardinality, re-

spectively of an attribute A to a new value
v.

υclass
a (A,Cv) Migratory Moves an attribute A to a class Cv.

p: associations(class(A), Cv) 6= ∅
σa(X1,X2) Synchronizing Synchronizes two sets of attributes X1 and

X2.
p: (∃C ∈ Sc)(X1,X2 ⊆ attributes(C))

Table 7.1: Examples of atomic operations for PIM schema adaptation

The migratory operation υclass
a (A,Cv) allows for moving an attribute . Its

precondition requires that there must be an association connecting the current
class Cu of A with Cv. This is natural since when we move an attribute, there
is typically some semantic relationship between Cu and Cv. This relationship
may be modeled in the PIM schema by an association connecting Cu and Cv. It
may also be modeled by a path of associations. Or, it can even be not modeled
in the PIM schema at all and, instead, only considered by the designer implic-
itly in his/her mind. Note that the atomic operation only considers the former
case. The other cases may be implemented by composing the creation, removal
and migratory operations. See [90] for details. The synchronizing operation
σa(X1,X2) allow for denoting that two sets of attributes are semantically equiva-
lent. They have no direct effect on the structure of the edited PIM schema. The
precondition of this operation requires the synchronized attributes to be with-
in the same class. For an example of how these operations can cover changes,
let us get back to our motivational example, where we change a representation
of a part of customer information from attributes name, line1 and line2 to at-
tributes name, street, city and country. First of all, we add the new attributes:
Astreet = αa(Customer), Acity = αa(Customer), Acountry = αa(Customer). Next,
we specify the semantic equivalence of the new and the old set of attributes:
σa({Aname, Aline1, Aline2}, {Aname, Astreet, Acity, Acountry}). Finally, we remove the
old attributes: δa(Aline1), δa(Aline2).

Atomic operations for PSM schema evolution are similar to the previous ones.
Their examples are listed in Tab. 7.2. Only the synchronization of two sets of
associations is more complicated. We cannot require that the associations connect

69

Operation Kind Effect
C ′ = α′c() Addition Adds a new class C ′.
R′ = α′r(C ′1, C ′2) Addition Adds a new association R′ going from an

existing class C ′1 to another existing class
C ′2.
p: (∀R′ ∈ S ′r)(child′(R′) 6= C ′2).

δ′c(C ′) Removal Removes an existing class C ′ from S ′.
p: attributes′(C ′) = ∅ ∧
associations′(C ′) = ∅

δ′r(R′) Removal Removes an existing association R′.
υ

name′|card′
r (R′, v) Sedentary Updates the name or cardinality of an

association R′ to a new value v.
υint′

c|a|r(X ′, X) Sedentary Updates an interpretation of a class, at-
tribute, or association X ′ to a class,
attribute or association X in the PIM
schema, respectively.

υparticipant′
r (E′, C ′v) Migratory Reconnects an endpoint E′ to a class

C ′v.
p: participant′(E) =
parentclass′(C ′v) ∨

C ′v =
parentclass′(participant′(E′))

σ′r(X ′1,X ′2) Synchronizing Synchronizes two sets of associations X ′1
and X ′2.
p: (∃C ′1 ∈ S′c, C2 ∈ Sc)(∀X ′1 ∪ X ′2)

(parent′(R′) = C ′1∨child′(R′) = C ′2)

Table 7.2: Examples of atomic operations for PSM schema adaptation

the same classes because the PSM schema is a forest of trees. Instead, we require
that the associations have only one class in common. The other classes must have
the same PIM class as their interpretation.

7.4 Propagation of Atomic Operations
An interpretation I of a PSM schema S ′ against a PIM schema S must satisfy
the conditions given by Def. 6.5. When S or S ′ is modified, the conditions may
be violated and the other must be modified accordingly. We call this process
propagation. When an atomic operation is executed on S, it must be propagated
to all PSM schemas with an interpretation against S. Vice versa, when an atomic
operation is executed on S ′, it must be propagated to S and, from here, to the
other PSM schemas. This process is called joint adaptation of multiple XML
schemas related by the PIM schema. Here we discuss only the most interesting
parts of propagation mechanism. See [90] for details.

The propagation works for the addition, removal and sedentary operations
as follows: An addition is not propagated by our mechanism, because a created
component models a new part of reality which is not represented in the other
schemas. The removal operations are propagated from the PIM to the PSM lev-
el. Removal of a PIM component X has an impact on each PSM component X ′

70

s.t. I(X ′) = X. There are two propagation options: X ′ may be removed as well
or I(X ′) is set to λ.The removal operations in the other direction are not prop-
agated because, according to Def. 6.5, the existence of a PIM component does
not depend on any PSM component. The sedentary operations are propagated
straightforwardly. Types and cardinalities are propagated automatically due to
type and cardinality compatibility. Names are propagated only optionally. Fi-
nally, the migratory operations propagation must move the interpreted attributes
and associations to the PSM schema counterparts of their new PIM classes. This
may require creating the PSM classes where they were not before.

Propagation of Synchronizing Operations. Synchronizing of a set X2 with
a set X1 does not violate Def. 6.5. But, our propagation mechanism ensures that
the equivalence is preserved in PSM schemas. An existence of an equivalent to X1
implies an existence of an equivalent to X2 in a given PSM schema, and vice versa.
We show its propagation only from PIM to PSM. The reversed propagation is only
a technical modification. To demonstrate propagation of attribute synchronization
suppose a PIM schema in Fig. 7.1 (a) and two PSM schemas in Fig. 7.1 (b,d)
with interpretations against the PIM schema. Suppose that the designer needs
to replace attributes line1, line2 with attributes street, city, country in the
PIM schema. One part of this operation is the synchronization of set {street,
city, country} with set {line1, line2}. It means that whenever there are
attributes with interpretations line1 and line2 in the same interpreted class
context C ′ there must also be attributes with interpretations street, city and
country in the same interpreted class context, and vice versa.

Customer

 - line1

 - line2

 - street

 - city

 - country

Customer

Address

 - line1

 - line2

Customer

Address

 - line1

 - line2

 - street

 - city

 - country

(a) (b) (c)

Customer

(d)

 - line1

Figure 7.1: Attribute synchronization

This is the case of class Customer′ in Fig. 7.1 (b). There are attributes line1′

and line2′ with interpretations line1 and line2, respectively, and with the
interpreted class context Customer′. Therefore, the propagation creates the at-
tributes street′, city′, and country′ with interpretations street, city, and
country with the interpreted class context Customer′, respectively as shown in
Fig. 7.1 (c). On the other hand, there is only a single attribute with an interpreta-
tion line1 in Fig. 7.1 (d) and no attribute with interpretation line2. Therefore,
the synchronization is not propagated in this case. Due to lack of space we do not
show the propagation of synchronization of associations. However, the process is
very similar to the synchronization of attributes.

71

7.5 Evaluation

The conceptual modeling language for XML proposed in our previous works was
implemented in a case tool eXolutio2 including the system of atomic and compos-
ite operations described in this chapter. We used the implementation to evaluate
our approach on XML vocabulary standardized by Czech public authorities. It
is used in a public procurement system and its PIM schema is simple. It has
4 classes interconnected by 9 associations. The vocabulary comprises 17 XML
schemas each modeled by a separate PSM schema. Figure 7.2(a) shows the num-

0

50

100

150

200

250

300

α ν δ σ

0

100

200

300

400

500

600

α ν δ σ

0

20

40

60

80

100

120

α ν δ σ

0

50

100

150

200

250

300

350

400

450

α ν δ σ

(a) (b) (c) (d)

Figure 7.2: Statistics

ber of atomic operations performed to create the PIM and PSM schemas. Only
creation and sedentary operations were necessary. First, there was a requirement
to model 6 new XML schemas as 6 additional PSM schemas. The number of
performed atomic operations is depicted in Figure 7.2(b). Only creation and
sedentary operations were performed. Second, there was a requirement to make
the existing XML schemas more readable for developers. This required renam-
ing some existing XML elements and attributes in the XML schemas and their
reconnecting. Also merges of various components into single ones were done. In
both cases, only local changes in PSM schemas were done and the PIM schema
was not affected. The number of performed atomic operations is depicted in Fig-
ure 7.2(c). All kinds of operations were necessary in this step. Third, various
changes to the PIM schema needed to be made. These changes resulted from a
new legislation which is currently implemented in Czech republic. In this case,
the changes were correctly propagated by our introduced mechanism to the PSM
schemas. The number of performed atomic operations is depicted in Figure 7.2(d).
The study showed us that all introduced atomic operations are necessary. Also,
they are sufficient for all kinds of changes performed. The light gray columns in
Figure 7.2(d) show the number of atomic operations automatically performed
by our propagation mechanism. Without the mechanism, they would have to
be performed manually by the designer. However, the amount of manual work
saved is much higher. Even in the previous steps, it saves a significant amount
of work. When the designer designs a new PSM schema on the base of the PIM
schema, our technique ensures that he works consistently with the PIM schema
and, therefore, with other PSM schemas. The designer does not need to check
this consistency manually which saves him a great deal of work and prevents from
design errors.

2http://www.eXolutio.com

72

http://www.eXolutio.com

7.6 Conclusions
In this chapter we have identified several problems of design and evolution of
a family of XML schemas and showed how to solve them using the strategy of
MDA. We showed that a common conceptual schema in a PIM may be designed
and the XML schemas may be then derived in a form of visual schemas of PSM.
We defined the sets of atomic operations for the two levels and demonstrated their
propagation. We show on preliminary experiments that our strategy apparently
enables to save both manual effort and errors of evolution management.

73

74

8. Evolution and Change
Management of XML-based
Systems
XML is de-facto a standard language for data exchange. Structure of XML
documents exchanged among different components of a system (e.g. services in
a Service-Oriented Architecture) is usually described with XML schemas. It is a
common practice that there is not only one but a whole family of XML schemas
each applied in a particular logical execution part of the system. In such systems,
the design and later maintenance of the XML schemas is not a simple task.

In this chapter we aim at a part of this problem – evolution of the family of the
XML schemas. A single change in user requirements or surrounding environment
of the system may influence more XML schemas in the family. A designer needs to
identify the XML schemas affected by a change and ensure that they are evolved
coherently with each other to meet the new requirement. Doing this manually
is very time consuming and error prone. In this chapter we show that much of
the manual work can be automated. For this, we introduce a technique based on
the principles of Model-Driven Development. A designer is required to make a
change only once in a conceptual schema of the problem domain and our technique
ensures semi-automatic coherent propagation to all affected XML schemas (and
vice versa). We provide a formal model of possible evolution changes and their
propagation mechanism. We also evaluate the approach on a real-world evolution
scenario.

This chapter is based on the refined conceptual model for XML in Chapter 6,
extends Chapter 7 and continues in the research direction stated in Chapter 1.

This chapter is the base of the XML schema evolution part of this thesis. The
contents of this chapter was published as an impacted journal paper Evolution
and Change Management of XML-based Systems1 [89] in Journal of Systems and
Software (JSS).

8.1 Introduction
In this chapter we focus only on a part of the problem described – coherent
evolution of XML schemas according to changing requirements. (See our recent
work [71] where we discuss the other part of the problem – adaptation of un-
derlying XML documents when their XML schemas evolve). We propose a tech-
nique based on the Model-Driven Development (MDD) [78] methodology. We
consider modeling the XML schemas at two MDD levels – platform-independent
and platform-specific. First, the whole application data domain is modeled inde-
pendently of the XML schemas in the form of a platform-independent schema.
Then, each XML schema in the family is designed in the form of a platform-
specific schema which is mapped to the platform-independent schema. It may
be then automatically translated to an expression in a selected XML schema

1http://dx.doi.org/10.1016/j.jss.2011.09.038

75

http://dx.doi.org/10.1016/j.jss.2011.09.038

language, e.g. XSD (XML Schema Definition) [128] or RELAX NG [29]. The
mappings of platform-specific schemas to platform-independent schema naturally
support evolution management. A change is explicitly expressed as a change to
the platform-independent schema or one of the platform-specific schemas. The
mappings allow us to propagate the change between platform-independent and
platform-specific levels semi-automatically and evolve the whole family of XML
schemas coherently.

Contributions The key contributions of this chapter are as follows:

• formal models for designing XML schemas at platform-independent and
platform-specific MDD levels and a set of atomic operations for their evo-
lution,

• proof of minimality and correctness of the set,

• mechanism for propagating changes invoked by the atomic operations be-
tween the MDD levels,

• specification of operations composed of the atomic ones and their propaga-
tion between the MDD levels,

• implementation of the proposed framework called eXolutio [55], and

• experimental demonstration of the completeness of the set of atomic oper-
ations and correctness of the propagation mechanism by applying eXolutio
in a real-world case study.

Although there is other existing work in the area of schema evolution (as we
will show in Section 8.7), the evolution problem has not yet been adequately
solved [47]. We will show that the current approaches omit some important
kinds of operations and provide an insufficient solution to the problem of the
propagation of changes. And, last but not least, they do not introduce operations
as a formal set of simple atomic operations which would allow authors of tools for
schema evolution to build various more-user friendly operations as compositions
of the atomic operations. In this work, we introduce such formalism. Its main
advantage is that it enables one to specify a new operation as a sequence of the
atomic operations without the details of how the new operation is propagated to
the other parts of the system. Our propagation mechanism ensures its correct
propagation automatically.

In this chapter we combine and, in particular, extend previous work in this
area. A technique for designing XML schemas at platform-independent and
platform-specific levels was firstly proposed in [86] and later generalized in [94].
A basic implementation of a modeling tool based on the models was introduced
in [54]. In this text we describe it in detail including its evolution extension and
show its usage in real-world use cases. In [91, 93] is a five-level XML evolution
framework which presents a general overview of the problem of XML schema
evolution in the context of a whole software system consisting of various parts.
In this chapter we lay the theoretical basis of our approach. We provide a for-
mal and detailed description of evolution operations and their propagation, prove

76

minimality and the correctness of our approach and extend it with explanatory
examples. In general, this chapter expands on the results of our recent research
with an emphasis on formal specification.

In [138] the authors discussed two kinds of evolution approaches – incremen-
tal and change-based approaches. An incremental approach enables a clear formal
basis which ensures correctness and allows for simple evolutionary steps made by
a designer. A change-based approach is suitable for cases when we are provided
with two versions of the schema without the incremental evolutionary steps and
we need to manage evolution of the data efficiently. In this work, we introduce an
incremental approach based on a set of atomic operations. A designer incremen-
tally performs particular atomic operations or operations comprising the atomic
ones. Our technique continuously propagates the changes to affected schemas.

Outline The rest of the chapter is structured as follows: In Section 8.2 we
provide a motivating and running example. In Section 8.3 we describe the problem
of XML schema evolution in the context of a whole software system and specify
the selected part of the problem solved in this chapter. In Section 8.4 we extend
the PIM and PSM levels of our conceptual model for XML (see Chapter 6)
with a set of atomic operations. In Section 8.5 we describe the propagation
mechanism of the atomic operations between the levels and show that the atomic
operations together with the propagation mechanism form a minimal and correct
evolution formalism. In Section 8.6 we show how the atomic operations form
realistic composite operations. In Section 8.7 we compare our proposal with
current related works. In Section 8.8 we introduce the implementation of the
introduced evolution formalism called eXolutio and its application in a real-world
case study. We also evaluate our approach on the basis of this case study. Finally,
in Section 8.9 we conclude and outline possible future work.

8.2 Motivating and Running Example
As a demonstration of the problem of evolution management of XML schemas, let
us consider a company that receives purchase orders and let us focus on a part of
the system that processes purchases. Let the messages used in the system be XML
messages formatted according to a family of different XML schemas. Consider the
two sample XML documents in Figure 8.1. The former one is formatted according
to an XML schema specifying a list of customers. The latter one is formatted
according to a different XML schema specifying purchase requests. There are
also other XML schemas in the family (e.g. customer details, purchase responses,
purchase transport details, etc.). All the XML schemas share the same data
domain (purchasing goods). On the other hand, the same part of the domain
may be represented in different XML schemas in different ways. For example,
the concept of customer is represented in each of our sample XML schemas in a
different way. On the right hand side, elements name and email are present for
a customer. On the left hand side, kinds of customers are distinguished (private
and corporate customers). For private customers, elements name, address and
phone are present. For corporate customers, elements name, different addresses
(headquarters, storage and secretary), and phone are present.

77

<custList version="1.3">
 <cust>
 <name>Martin Necasky</name>

 <address>Vaclavske nam. 123, Prague</address>
 <phone>123 456 789</phone>
 </cust>
 <cust>
 <name>Department of Software Engineering,
 Charles University</name>

 <hq>Malostranske nam. 25, Prague</hq>
 <storage>Ke Karlovu 3, Prague</storage>
 <secretary>Ke Karlovu 5, Prague</secretary>

 <phone>111 222 333</phone>
 </cust>
</custList>

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
 <name>Department of Software Engineering,
 Charles University</name>

<email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
 <item>

<code>P045</code>
</item>

 <item>
<code>P332</code>

</item>
 </items>
</purchaseRQ>

Figure 8.1: Sample XML documents represented in a single XML system

Let us consider a new user requirement that an address should no longer
be represented as a simple string. Instead, it should be divided into elements
street, city, zip, etc. Such a situation would require a skilled domain expert to
identify all the schemas in the system which involve an address and correct them
respectively. Apparently, in a complex system comprising tens or even hundreds
of schemas, this is a difficult and error-prone task. Even identifying the affected
parts of the schema is not an easy and straightforward process. For example, we
may need to make the modification only for addresses that represent a place to
ship the goods (which are the elements address and storage in the XML schema
instantiated on the left-hand side of the figure and element ship-to on the right-
hand side). We do not want to modify addresses that represent headquarters,
etc.

In the following text we show in detail that evolution management is a complex
process that can be solved semi-automatically and, hence, efficiently and precisely
if we provide a rigorous theoretical background and preserve nontrivial relations
and meta-data.

8.3 XML Evolution Framework
In our previous work [91], we introduced a framework for managing evolution of a
software system which exploits XML technologies at different levels. An extended
version of the framework is depicted in Figure 8.2. As we can see, the framework
can be partitioned both horizontally and vertically; in both cases its components
are closely related and interconnected. The relations form the key concept of the
evolution management, since they invoke the needs for change propagation.

If we consider the vertical partitioning, we can identify multiple views of
the system. In the framework we have depicted the three most common and
representative views. The blue (leftmost) part covers an XML view of the data
processed and exchanged in the system. The green (middle) part represents the
storage view of the system, e.g. a relational view of the processed data which
need to be persistently stored. Finally, the yellow (rightmost) part represents
a processing view of the data, e.g. processing by sequences of Web Services
described using BPEL scripts [100] or various proprietary formats (e.g. [110]).

If we consider the horizontal partitioning, we can identify five levels, each
representing a different view of an XML system and its evolution. The lowest

78

XML

documents

XML

documents
XML queries

XML schema

XML PSM

diagram 1

PIM diagram

XML

documents

XML

documents
XML queries

XML schema

XML PSM

diagram m

ER PSM

diagram 1...

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level XML

data

XML

storage

XML

data

SQL DDL

XML

documents

XML

documents
SQL DML

...
ER PSM

diagram n

XML

storage

SQL DDL

XML

documents

XML

documents
SQL DML

BP PSM

diagram 1

BPEL script

...
BP PSM

diagram k

BPEL script

Application Application

XML view Storage view Processing view

Figure 8.2: Five-level XML evolution architecture

level, called extensional level, represents the particular instances that form the
implemented system such as, e.g., XML documents, relational tables or Web
Services that are components of particular business processes. Its parent level,
called operational level, represents operations over the instances, e.g. XML queries
over the XML data expressed in XQuery [20] or SQL/XML [48] queries over
relations. The level above, called schema level, represents schemas that describe
the structure of the instances, e.g. XML schemas or SQL/XML Data Definition
Language (DDL).

Even these three levels indicate problems related to XML evolution. For in-
stance, when the structure of an XML schema changes, its instances, i.e. XML
documents, and related queries must be adapted accordingly so that their validity
and correctness is preserved respectively. In addition, if we want to preserve opti-
mal query evaluation over the stored data, the storage model also needs to adapt
respectively. What is more, as we have mentioned, in practice there are usually
multiple XML schemas (families of XML schemas) applied in a single system,
e.g. XML schemas for purchases, invoices, product catalogues, etc., i.e. multiple
views of the common problem domain. Hence, such a change can influence mul-
tiple XML schemas, XML documents and queries. In general, a change at one
level can trigger a cascade of changes at other levels. We call such sequences of
adaptations change propagation.

Considering only the three levels leads to evolution of each affected schema
separately. However, this is a highly time-consuming and error-prone solution
since we need a domain expert who is able to identify all the affected schemas
and propagate the changes. Therefore, we introduce two additional levels, which
follow the MDD [78] principle, i.e. modeling of a problem domain at different
levels of abstraction. As we have mentioned, the topmost one is the platform-
independent level which comprises a schema in a platform-independent model
(PIM schema). The PIM schema is a conceptual schema of the problem domain.
It is independent of any particular data (e.g. XML or relational) or business
process (e.g. Web Services) model. The level below, called platform-specific level,
represents mappings of the selected parts of the PIM schema to particular data
or business process models. For each model it comprises schemas in a platform-
specific model (PSM schemas) such as, e.g., XSEM schemas [86] which model
XML schemas, ER [27] schemas which model relational schemas, etc. Each PSM
schema can be then automatically translated to a particular language used at the
schema level and vice versa. Note that the latter direction allows for integration

79

of incoming formats/applications into the given evolution framework.
As we can see in Figure 8.2, there are not only vertical relations between the

levels, but the components of the system can also be horizontally related across
the vertical partitions. A few examples are denoted by the red dashed arrows. For
instance, there is a relation between an XML schema and its respective storage in
a relational database. Similarly, an XML query can be evaluated by translation
into an SQL query. And, last but not least, a BPEL script can specify how an
input SOAP message, i.e. an XML schema, is processed.

In all the three cases a change in one of the ends of the relation influences
the other. So, since we are considering completely different formats involving
different constructs which do not have to correspond mutually using one-to-one
relationship, the change propagation becomes a complex problem. But, having
a hierarchy of models which interconnect all the applications and views of the
data domain using the common PIM level, it can be done semi-automatically
and much more easily. We do not need to provide a mapping from every PSM to
all other PSMs, but only from every PSM to the PIM which is, in addition, quite
natural. Hence, the vertical change propagation is realized using this common
point. For instance, if a change occurs in a selected XML document, it is first
propagated to the respective XML schema, PSM and, finally, PIM. We speak
about an upwards propagation, in Figure 8.2 represented by white arrows. It
enables one to identify the part of the problem domain that was affected. Then,
we can invoke the downwards propagation. It enables one to propagate the change
of the problem domain to all the related parts of the system. In Figure 8.2 it is
denoted by grey arrows.

8.3.1 Selected Part of the Problem
Apparently, the change propagation problem is not an easy task and cannot be
covered in a single paper. In this chapter we aim at one particular problem – XML
schema evolution. As we have shown in the motivating example, there is usually
a whole family of XML schemas which are conceptually related to the problem
domain of the system. When a designer needs to make a change in one of the
XML schemas, the other XML schemas may be affected as well. We introduce an
approach which is based on modeling the changes at PIM and PSM XML levels
as highlighted in Figure 8.3. It ensures that whenever a change is performed in a
PIM schema, it is correctly propagated to the PSM schemas and vice versa. So
it ensures consistency between the schemas when they are changed.

`

XML

documents

XML

documents
XML queries

XML schema

XML PSM

diagram 1

XML

documents

XML

documents
XML queries

XML schema

XML PSM

diagram m

ER PSM

diagram 1...

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level XML

data
DBMS

XML

data

SQL DDL

XML

documents

XML

documents
SQL DML

...
ER PSM

diagram n

DBMS

SQL DDL

XML

documents

XML

documents
SQL DML

BP PSM

diagram 1

BPEL script

...
BP PSM

diagram k

BPEL script

Application Application

PIM diagram

XML view Storage view Processing view

Figure 8.3: Five-level XML evolution architecture – data representation

80

In practice, this problem appears in two scenarios. The first scenario is when
a designer creates new XML schemas which have not been deployed in a run-time
environment yet. There are neither XML documents formatted according to the
XML schemas, nor other developers or applications which would somehow use the
XML schemas. In other words, there is no extensional level and no operational
level. Because of the complexity of the task, the designer does not create XML
schemas in a single linear process. Instead, (s)he iterates in several cycles before
an acceptable version of the XML schemas is prepared to be deployed. (S)he
starts each iteration with a selected part of the requirements and incorporates
them into the XML schemas. For that, (s)he needs a mechanism which shows
an impact of a next change to the unfinished XML schemas and which helps to
adapt the XML schemas according to this change. No propagation to extensional
or operational levels is necessary at this stage.

The most frequent modifications to the XML schemas in this scenario will be,
intuitively, creating new parts of the XML schemas. However, updating existing
parts with their more detailed and elaborate variants will be frequent as well. This
is because the designer will cover some of the requirements only briefly in the XML
schemas in early iterations and will return to them in later iterations to finish
them. In simpler cases, updating means changing properties of existing XML
schema components (e.g. data type). In more complex cases, updating means
removing old parts and replacing them with new but semantically equivalent and
more elaborate parts. No backward compatibility of the new version needs to be
preserved since there is neither extensional, nor operational level.

The second scenario is adapting existing XML schemas which have already
been deployed in a run-time environment. In this scenario it is necessary to
consider the extensional and operational level as well, because there exist XML
documents and applications which use the XML schemas. Such scenario usually
occurs when new or changed requirements need to be implemented in the system
(e.g. a legislative change). Due to backward compatibility the designer will
probably not remove the existing parts of the XML schemas. If some part needs
to be detailed (or, conversely, simplified), it will be extended with a new version,
not replaced.

The approach we introduce in the following sections is fully sufficient for the
first scenario and partly also for the second scenario. For the second scenario,
propagation to the extensional and operational level is also necessary. We de-
scribed the propagation to the extensional level in [71]. The technique introduced
generates an XSLT script which transforms XML documents from the old ver-
sion of each affected XML schema to the new version. The propagation to the
operational level is the matter of our future work.

A careful reader might notice that we omitted the schema level in the above
paragraphs. Our approach allows the designer to work only at the PIM and
PSM levels and not to consider the schema level. This is because our introduced
PSM level is equivalent to the schema level from the syntactical point of view.
The PSM level has two purposes in addition to the schema level – it provides a
more user-friendly presentation of the XML schemas to the designer and extends
the XML schemas with mappings to the conceptual schema at the PIM level.
In [92], the equivalence was proven formally. We also showed how a PSM schema
may be automatically translated to an XML schema expressed in some XML

81

schema language and vice versa via the formalism of regular tree grammars [96].
However, this is beyond the scope of this chapter. We will just keep this fact in
mind. We will present a set of operations for changing PSM schemas. Because
of the equivalence, a change operation at the PSM level unambiguously and
correspondingly describes a change in the modeled XML schema and it is not,
therefore, necessary to explicitly convert it to a change specific for an XML schema
expressed in some XML schema language.

8.4 Atomic Operations
In this section, we introduce atomic operations for editing PIM and PSM schemas.
They are not intended to be used directly by the designer, because they are too
primitive and using them would be too laborious and clumsy for the designer.
However, they will serve us as a formal basis for describing more user-friendly
operations composed of these atomic operations. In Section 8.6 we will describe
composite operations. In Section 8.5 we will describe how operations are propa-
gated between PIM and PSM levels to ensure the consistency of corrupted inter-
pretations.

Formally, we suppose a PIM schema S = (Sc,Sa,Sr) and a set of PSM schemas
PSM = {S ′1, . . . , S ′n}, where each S ′i has an interpretation Ii against S. We
also consider one specific PSM schema S ′ = (S ′c,S ′a,S ′r,S ′m, C ′S′) from this set with
an interpretation I against S. For each atomic operation, we specify its input
parameters together with a precondition and postcondition. If a precondition is
not satisfied, the operation cannot be performed. The postcondition describes
the effect of the operation. When an operation is executed on S or S ′, we say
that the schema evolved to a new version. This is denoted S+ or S ′+, respectively.
The new version of the interpretation will be denoted I+. Initially, we suppose
a single empty PIM schema and empty PSM. The PIM schema cannot be
removed. On the other hand, a new PSM schema with an interpretation against
the PIM schema may be created and later removed.

We classify atomic operations into 4 categories: creation (denoted by the
Greek letter α), update (denoted by the Greek letter υ), removal (denoted by the
Greek letter δ) and synchronization (denoted by the Greek letter σ). While the
creation, update and removal operations are common in the literature, the syn-
chronization operations have not been considered and are novel in our approach.
They are crucial for the evolution.

A synchronization operation allows for the specification that two sets of com-
ponents are semantically equivalent. Consider a simple scenario with a class
Customer which models a concept of customer. Customer’s address is modeled
with attribute address. Later, users require a more precise specification of ad-
dress including street, street number and city. Therefore, the designer needs to
replace address with new attributes street, streetno and city. According to ex-
isting approaches, this means creating the new attributes and removing the old
one. However, this leads to loosing the information that the old attribute is se-
mantically equivalent to the new set. Without this information, the performed
change cannot be correctly propagated as we will show later. This is the reason
why we propose synchronization operations. We use them to specify that address
is semantically equivalent to the set {street, streetno, city}.

82

Definition 8.1 Let X1 and X2 be two sets of components from the same PIM
or PSM schema. We use predicate equiv(X1, X2) to denote that X1 and X2 are
semantically equivalent. It means that X1 models the same information as X2.

8.4.1 Atomic Operations for PIM Schema Evolution
We start with atomic operations for evolution of PIM schemas. The operations
for creating new components are summarized in Table 8.1: their semantics is clear
and so we provide no further description. Let us just note that the name, data
type, and cardinality of created components are set to default values configured
by the schema designer.

Notation Description Precond. Postcondition
C = αc() Create class C with de-

fault name lc
true C ∈ (S+

c \ Sc) ∧ name+(C) = lc

A = αa(C) Create attribute A with
default name, type and
cardinality la, lt, and lc

C ∈ Sc A ∈ (S+
a \ Sa) ∧ class+(A) = C ∧

name+(A) = la
∧ type+(A) = ta ∧ card+(A) = ca

R =
αr(C1, C2)

Create association R
with default
name and cardinalities
lr and cr

C1, C2 ∈ Sc R = {E1, E2} ∈ (S+
r \ Sr) ∧

name+(R) = lr
∧ participant+(E1) = C1 ∧
participant+(E2) = C2
∧ card+(E1) = cr ∧ card+(E2) =
cr

Table 8.1: Atomic operations for creating new PIM components

The operations for updating components are summarized in Table 8.2. There
are two update operations which merit a more detailed explanation – moving an
attribute A from its current class to another class (υclass

a) and reconnecting an as-
sociation end E from its current class to another class (υclass

r). The preconditions
of both operations require that the current and new class are connected by an as-
sociation (associations(C1, C2) denotes all associations connecting classes C1 and
C2). Therefore, it is not possible to move an attribute or reconnect an association
end between classes which are only connected by a path of associations or are
not connected at all. However, it is possible to create a composite operation from
the atomic operations which allows for moving the attributes and reconnecting
association ends freely. It can perform atomic moves or reconnections in case
where there is a connecting path. And, it can create a temporary association
connecting the classes in case there is no connection at all.

The operations for removing components are summarized in Table 8.3; how-
ever, the class removal operation (δc) requires the removed class to have no at-
tributes and connected associations, so all attributes and associations connected
to the class must be removed before removing the class itself.

And, finally, the operations for synchronizing components are summarized in
Table 8.4. We introduce two operations – synchronization of two sets of attributes
and synchronization of two sets of associations. The precondition of the former
synchronization operation requires the attributes from both sets to belong to the
same class. It is not restrictive. It is possible to have two synchronized sets of
attributes, where each attribute is in a different class. However, we need to per-
form a sequence of atomic operations – this consists of moving the attributes to

83

Notation Description Precondition Postcondition
υname
c (C, v) Update name of

class to v
C ∈ Sc name+(C) = v

υ
name | type | card
a (A, v)Update name,

type, or car-
dinality of
attribute to v

A ∈ Sa name+(A) = v,
type+(A) = v or
card+(A) = v

υclass
a (A,C) Move attribute

to class C
A ∈ Sa ∧ C ∈ Sc ∧
associations(class(A), C) 6= ∅

class+(A) = C

υname
r (R, v) Update name of

association to v
R ∈ Sr name+(R) = v

υclass
r (E,C) Reconnect asso-

ciation end to
class C

C ∈ Sc ∧ (∃R ∈ Sr)(E ∈ R) ∧
associations(participant(E), C) 6=
∅

participant+(E)
= C

υcard
r (E, v) Update cardinal-

ity of association
end to v

(∃R ∈ Sr)(E ∈ R) card+(E) = v

Table 8.2: Atomic operations for updating PIM components

Notation Description Precondition Postcondition
δc(C) Remove class C C ∈ Sc ∧ attributes(C) = ∅ ∧

associations(C) = ∅
C 6∈ S+

δa(A) Remove attribute A A ∈ Sa A 6∈ S+

δr(R) Remove association R R ∈ Sr R 6∈ S+
c

Table 8.3: Atomic operations for removing PIM components

the same class, synchronization and moving them back to their original classes.
Similarly, the precondition of the other operation needs the associations to con-
nect the same two classes. Again, it is not restrictive, because other cases may
be achieved by performing a sequence of atomic operations.

The reader might notice that we do not provide an operation for synchro-
nizning classes. An operation for synchronizing a mixture of classes, attributes
and associations is missing as well. Our preliminary case studies (one of the pro-
vided in Section 8.8) show that class synchronization is not necessary as classes
do not model data but only encapsulate them. Synchronization of a mixture of
components would be, theoretically, necessary, but too complex and unnatural
for common designers. Therefore, in the current version of our technique we try
to manage the evolution without these advanced synchronization operations. We
leave this scientifically interesting issue to our future work.

A sample evolution is depicted in Figure 8.4. Figure 8.4(a) shows a starting
PIM schema. It is a fragment of the PIM schema depicted in Figure 6.1. It
contains two classes Customer and Partner which model customers and part-
ners, respectively. Partners are responsible for customers which is modeled by
the relationship responsibility. First, there is a requirement to not further
consider partners. Therefore, class Partner needs to be deleted by operation
δc(Customer). It is necessary to perform δa(code) and δr(responsibility),
which delete the attribute code and also the association responsibility, prior
to δc(Customer). The result is depicted in Figure 8.4(b).

Second, there is a requirement to consider customer’s addresses in more de-
tail. Currently, it is modeled by attribute address of class Customer. The aim

84

Notation Description Precondition Postcondition
σa(X1,X2) Synchronize set of at-

tributes X2 with set of at-
tributes X2

X1 ⊆ Sa ∧ X2 ⊆ Sa
∧ (∃C ∈ Sc)(X1,X2 ⊆
attributes(C))

equiv+(X1,X2)

σr(X1,X2) Synchronize set of associ-
ations X2 with set of asso-
ciations X2

X1 ⊆ Sr ∧ X2 ⊆ Sr
∧ (∃C1, C2 ∈ Sc)(X1,X2 ⊆
associations(C1, C2))

equiv+(X1,X2)

Table 8.4: Atomic operations for synchronization of PIM components

Figure 8.4: Evolution of a sample PIM schema demonstrating the introduced
creation, update, removal and synchronization atomic operations

is to model addresses as depicted in Figure 8.4(h). The evolution is iterative.
Particular iterations are depicted in Figures 8.4(c)-(g). The designer starts with
modeling addresses with three separate attributes street, city and country
instead of the original attribute address. For this, (s)he creates the attributes
(street = αa(Customer), . . .), changes the default values of their names and
data types when necessary (υname

a (street, “street“), . . .), synchronizes them with
the original attribute (σa({address}, {street, city, country})) and, finally, re-
moves the original attribute (δa(address)). The synchronization is important.
It specifies that the new attributes are semantically equivalent with the old one.
The whole sequence of performed atomic operations can be viewed as splitting
the original attribute into the three new ones. Note that the precondition for
synchronization is satisfied (all attributes are in the same class). The result is
depicted in Figure 8.4(c).

Later, the designer notices that (s)he forgot to include GPS information. (S)he
needs to extend the three attributes street, city and country with a new at-
tribute gps. For this, (s)he creates the new attribute and synchronizes the original
set of attributes modeling address with the new set which is the original extend-
ed with gps (σa({street, city, country}, {street, city, country, gps})). The
result is depicted in Figure 8.4(d).

Now, class Customer contains too much information and the designer wants
to make it more transparent. Therefore, (s)he decides to move attributes street,
city and country to a separate class Address. However, this class is not present.
Therefore, the designer needs to create it and update its name (Address = αc(),
υname

c (Address, “Address“)). (S)he also needs to connect it with Customer by

85

creating a new association address (address = αr(Customer, Address), . . .).
Then, (s)he can move the attributes to the new class (υclass

a (street, Address),
. . .). The old and new class are connected by an association and, therefore,
the precondition for moving the attributes is satisfied. The result is depicted in
Figure 8.4(e). (S)he also needs to detail gps to latitude and longitude and
move them to a separate class GPS. Therefore, she performs a similar sequence
of operations as for the former address attribute. And, finally, (s)he needs to
extend customers to have one or two addresses instead of one. (S)he, therefore,
changes the cardinality of association address to 1..2 (υcard

r (address2, 1..2)),
where address2 is the endpoint associated with Address. The result is depicted
in Figure 8.4(f).

In the following step, the designer gets a requirement to explicitly distinguish
the semantics of the two addresses to a mandatory shipping address and optional
billing address. Therefore, (s)he splits the association address to two new as-
sociations shipto and billto. As with the splitting of attributes, this entails
creating two new associations (shipto = αr(Customer, Address), . . .), changing
their default names and cardinalities (υname

r (shipto, “shipto“), . . .), synchroniz-
ing the old association with the new ones (σr({address}, {shipto, billto})),
and removing the old association (δr(address)). Note that the synchronized
associations connect the same classes and, therefore, preconditions for the syn-
chronization are satisfied. The result is depicted in Figure 8.4(g).

Finally, there appears a requirement to record GPS information for each ad-
dress instead of a customer. For this, the designer reconnects the association gps
from class Customer to class Address (υclass

r (gps1, Address)), where gps1 is the
endpoint associated with Customer. Again, the precondition for the reconnec-
tion is satisfied, because the classes are connected by an association. The result
is depicted in Figure 8.4(h).

8.4.2 Atomic Operations for PSM Schema Evolution
In this section, we introduce atomic operations for evolution of PSM schemas.
The operations for creating new components are summarized in Table 8.5: there
is also an operation for creating PSM schemas themselves. Again, names, data
types, XML forms and cardinalities of new components are set to default values
which are configured by the designer. All components are created with an empty
interpretation against the PIM schema.

The operations for updating components are summarized in Table 8.6. Similar
to the operations for updating PIM components, there are two interesting opera-
tions – moving an attribute (υ′class

a) and reconnecting an association end (υ′class
r).

Both are similar to their PIM equivalents but there are some differences. An
attribute can be moved to the nearest ancestor or descendant class of its current
class (parentclass(C ′) denotes the nearest ancestor class to C ′). It can also be
moved to a structural representative of its current class or, conversely, to a class
which is a structural representative of its current class. For an association, only
its parent association end can be reconnected to the parent or to any child of its
current parent. When its current parent is a class, it can also be reconnected to
a structural representative of the current parent or, conversely, to a class which
is a structural representative of its current parent.

86

Notation Description Precondition Postcondition
(S ′, I) =
α′s(S)

Create new PSM schema
S ′
with interpretation I
against S

true S ′ = ({C′S′}, ∅, ∅, ∅, C′S′)
∧
S ′ ∈ (PSM+ \ PSM) ∧
I = {(C′S′ , λ)}

C ′ = α′c() Create new class C ′ with
default name lc

true C ′ ∈ (S ′c
+ \S ′c) ∧ I+(C ′)

= λ
∧ name+(C ′) = lc

A′ = α′a(C ′) Create new attribute A′

with default name, type,
XML form and cardinali-
ty la, ta, xa, and ca

C ′ ∈ S ′c A′ ∈ (S ′a
+ \ S ′a) ∧

class+(A′) = C ′

∧ I+(A′) = λ ∧
name′

+(A′) = la
∧ type+(A′) = ta ∧
xform+(A′) = x′a
∧ card+(A′) = ca

R′ =
α′r(X ′1, X ′2)

Create new association R′
with default name and
cardinalities lr and cr

X ′1 ∈ (S ′c ∪ S ′m)
∧ X ′2 ∈
(S ′c ∪ S ′m) \ {C′S′}
∧ (6
∃R′0)(child(R′0) =
X ′2)

R′ ∈ (S ′r
+ \ S ′r) ∧

parent(R′) = X ′1
∧ child(R′) = X ′2 ∧
I+(R′) = λ
∧ name+(R′) = lr ∧
card+(R′) = cr
∧ position(R′)+ =
|content (C ′)|

M ′ = α′m() Creates new sequence con-
tent model M ′

true M ′ ∈ (S ′m
+ \ S ′m) ∧

cmtype(M ′) = sequence

Table 8.5: Atomic operations for creating PSM schemas and their components

The operations for updating interpretations are summarized in Table 8.7.
Their preconditions ensure that the consistency of interpretation is not violated.
Concretely, the operation for updating class interpretation (υ′int

c) could violate
any of the conditions necessary for consistency. However, its precondition requires
that the interpretation of any attribute or association, whose consistency would
be corrupted by the update, must be empty. This includes all attributes and
associations which have the same interpreted context as the class (anc(X ′) used
in the precondition which denotes all ancestor classes of X ′). Also, the class can
not be a structural representative and, conversely, it cannot have a structural
representative. Therefore, the conditions can not be violated.

The operation for updating attribute interpretation (υ′int
a) could affect con-

dition (2) and the operation for updating association interpretation (υ′int
r) could

affect conditions (3) and (4). Their preconditions prevent any violations. (They
are directly rewritten from the definition.)

The operations for removing components of PSM schemas are listed in Ta-
ble 8.8. Their functionality is quite clear. Let us note that we can only remove
classes and content models that are empty and are roots of their PSM schema.
Also, we can only remove associations, whose removal does not violate Defini-
tion 6.7. When there are attributes or associations in the subtree of R′ with
the same interpreted class context as R′ and with non-empty interpretations, we
cannot remove R′. To correct the schema, we would need to set empty interpre-
tations to these attributes and associations, which is not an atomic operation.
Note that when we remove an association going to a class or content model, this
class or content model becomes a root.

87

Notation Description Precond. Postcond.
υ′

name
c (C ′, v) Update name of class

C ′ to v
C ′ ∈ S ′c name+(C ′) = v

υ′
repr
c (C ′, C ′r) Set class C ′ as struc-

tural representative of
C ′r

C ′ ∈ S ′c \ {C′S′} ∧ (C ′r
= λ ∨ (C ′r ∈ S ′c\{C′S′}
∧ I(C ′) = I(C ′r) ∧ C ′
6∈ repr∗(C ′r)))

repr+(C ′) = C ′r

υ′
cmtype
m (M ′, t) Update type of content

model M ′
M ′ ∈ S ′m ∧ t ∈
{sequence, choice, set}

cmtype+(M ′) = t

υ′
name|type
a (A′, v)

υ
card|xform
a (A′, v)

Updates name, type,
cardinality, or XML
form of attribute to v

A′ ∈ S ′a name+(A′) = v,
type+(A′) = v,
card+(A′) = v or
xform+(A′) = v

υ′
pos
a (A′) Changes position of at-

tribute A′ by −1
position(A′) > 1 position+(A′) =

position(A′)− 1
υ′

class
a (A′, C ′) Move attribute A′ to

class C ′
A′ ∈ S ′a ∧ C ′ ∈ S ′c ∧
(repr(class(A′)) = C ′

∨ class(A′) = repr(C ′)
∨

class(A′) =
parentclass(C ′) ∨

C ′ =
parentclass(class(A′)))

class+(A′) = C ′

υ′
name|card
r (R′, v) Update name or cardi-

nality of association R′
to v

R′ ∈ S ′r name+(R′) = v or
card+(R′) = v

υ′
pos
r (R′) Change position of as-

sociation R′ by −1
position(R′) > 1 position+(R′) =

position(R′)− 1
υ′

class
r (R′, P ′) Reconnect parent asso-

ciation end of associa-
tion R′
to new parent P ′

R′ ∈ S ′r ∧P ′ ∈ S ′c ∪S ′m
∧
(repr(parent(R′)) =
P ′ ∨ parent(R′) =
repr(P ′) ∨
∃R′p ∈ S ′r which con-
nects parent(R′) and
P ′)

parent+(R′) = P ′

Table 8.6: Atomic operations for updating PSM components

And, finally, the operations for synchronizing two sets of PSM components
are listed in Table 8.9. Similar to their PIM equivalents, they allow for synchro-
nization of two sets of attributes and two sets of associations. The operation for
attributes corresponds to its PIM equivalent. The operation for associations is
also similar. However, it is not possible to require the associations to have the
same participants (because of the tree nature of PSM schemas). Instead, we re-
quire that they have one of their participants in common: that is the child of none
or one of the associations and the parent of the others. The other participants
must be different classes but with the same non-empty interpretation. In other
words, these other participants are semantically equivalent (they have the same
class in the PIM schema as their interpretation). Therefore, the operation also
corresponds to its PIM equivalent.

Similar to synchronization in a PIM schema, the expression equiv+(X ′1,X ′2) =
true in the postconditions of both operations denotes that X ′1 and X ′2 are syn-
chronized in the new version of the PSM schema.

88

Notation Description Precondition Post...
υ′

int
c (C ′, C) Update

interpretation
of class C ′ to
class C

C ′ ∈ S ′c \ {C′S′} ∧ (C = λ ∨ C ∈ Sc) ∧
(∀A′ ∈ Sa s.t. intcontext(A′) =
intcontext(C ′) ∧ C ′ ∈ anc(A′))(I(A′) = λ)
∧
(∀R′ ∈ S ′r s.t. (intcontext(R′) =
intcontext(C ′)∧C ′ ∈ anc(R′))∨ child(R′) =
C ′)

(I(R′) = λ) ∧
(∀C ′0 ∈ S ′c)(repr(C ′0) 6= C ′) ∧ repr(C ′) = ∅

I+(C ′) = C

υ′
int
a (A′, A) Update inter-

pretation of
attribute A′

to attribute A

A′ ∈ S ′a ∧ (A = λ ∨ (A ∈ Sa ∧ class(A) =
I(intcontext(A′))))

I+(A′) = A

υ′
int
r (R′, O) Update inter-

pretation of
association R′

to directed
image O of
association R

R′ ∈ S ′r ∧ child′(R′) ∈ S ′c ∧ (O = λ ∨ (
O = (E1, E2) ∧

participant(E1) = I(intcontext(R′)) ∧
participant(E2) = I(child(R′))
))

I+(R′) = O

Table 8.7: Atomic operations for updating interpretations

We demonstrate the operations in Figure 8.5. Figure 8.5(a) shows a starting
PSM schema. It has an interpretation against the PIM schema depicted in Fig-
ure 8.4(a). The PIM schema evolves as we have demonstrated, so the consistency
of the interpretation of the PSM schema is broken. In this example, we show
how the PSM schema and its interpretation can be adapted using the introduced
atomic operations to ensure the consistency. Figures 8.5(b)-(h) show particular
evolutionary steps which result from changes at the PIM level demonstrated in
Figure 8.4.

First, the designer needs to remove class Partner’ (δ′c(Partner′)) to reflect
the first change in the PIM schema (removing class Partner). Prior to this,
(s)he removes attribute code’ (δ′a(code′)) and both associations partner’ and
customer’ (δ′r(partner′), δ′r(customer′)). Then, the designer creates a new asso-
ciation customer’ connecting the schema class and class Customer’ (customer′
= α′r(CustomerDetailSchema′, Customer′)) and sets its name using the appro-
priate operation (υ′name

r (customer′, “customer“)). The association has an empty
interpretation. The result is depicted in Figure 8.5(b).

Second, address was split into three new attributes in the PIM schema. The
designer correspondingly needs to split attribute address’ into three new at-
tributes street’, city’, and country’ in the PSM schema. (S)he creates at-
tributes (street′ = α′a(Contact′), . . .) and sets their names using the rename
operation (υ′name

a (street′, “street“), . . .) and sets the interpretations accoriding-
ly (υ′int

a (street′, street), . . .). Then, (s)he synchronizes the new attributes with
the original attribute (σ′a({address′}, {street′, city′, country′})). Note that
the preconditions of both setting interpretations and synchronization is satisfied
– the attributes are in the respective interpreted context and are within the same
class. Finally, (s)he removes the old attribute address’ (δ′a(address′)). The
result is depicted in Figure 8.5(c).

The designer then proceeds with extending the three new attributes with a

89

Notation Description Precondition Postcond.
δ′s(S ′) Remove existing

PSM schema S ′
and its interpre-
tation I against
S

S ′ ∈ PSM ∧ S ′ = (S ′c, S ′a, S ′r, S ′m, C′S′)
∧ S ′a = S ′r = S ′m = ∅ ∧ S ′c = {C′S′}

S ′ 6∈
PSM+

δ′c(C ′) Remove class C ′ C ′ ∈ S ′c ∧ attributes(C ′) = content (C ′) = ∅
∧ (6 ∃C ′0 ∈ Sc)(repr(C ′0) = C ′)

C ′ 6∈ S ′+

δ′a(A′) Remove attribute
A′

A′ ∈ S ′a A′ 6∈ S ′+

δ′r(R′) Remove association
R′

R′ ∈ S ′r ∧
(∀X ′ ∈ (Sa ∪ Sr : intcontext(X ′) =
intcontext(R′) ∧R′ ∈ anc(X ′))(I(X ′) = λ)

R′ 6∈ S ′+

δ′m(M ′) Remove cont. mod-
el M ′

M ′ ∈ S ′m ∧ content (M ′) = ∅ M ′ 6∈ S ′+

Table 8.8: Atomic operations for removing PSM schemas and their components

Notation Description Precondition Postcondition
σ′a(X ′1,X ′2) Synchronize set of

attributes X ′2 with
set of attributes X ′1

X ′1 ⊆ S ′a ∧ X ′2 ⊆ S ′a
∧ (∃C ′ ∈ S ′c) (X ′1,X ′2 ⊆
attributes(C ′))

equiv+(X ′1,X ′2)

σ′r(X ′1,X ′2) Synchronize set
of associations
X ′2 with set of
associations X ′1

X ′1 ⊆ S ′r ∧ X ′2 ⊆ S ′r ∧
(∃C ′1 ∈ S ′c, C2 ∈ Sc ∪ {λ})(∀R′ ∈
X ′1 ∪ X ′2)(

(C ′1 = parent(R′) ∧ child(R′) ∈
S ′c ∧

(I(child(R′)) = C2)) ∨
(C ′1 = child(R′) ∧ parent(R′) ∈
S ′c ∧

(I(parent(R′)) = C2)))

equiv+(X ′1,X ′2)

Table 8.9: Atomic operations for synchronization of components of PSM schemas

new attribute gps’. (S)he creates the attribute (gps′ = α′a(Contact′), . . .) and
sets its name (υ′name

a (gps′, “gps“), . . .) and interpretation (υ′int
a (gps′, gps), . . .).

Then, (s)he specifies that the three original attributes are semantically equiva-
lent to the extension (σ′a({street′, city′, country′}, {street′, city′, country′,
gps′})). The result is depicted in Figure 8.5(d).

Third, the designer moves the attributes street’, city’, and country’ to
a new class Address’. (S)he creates it (Address′ = α′c()) and sets its name
(υ′name

c (Address′, “Address“)) and interpretation (υ′int
c (Address′, Address)). The

designer (s)he connects the new class with Contact’ by creating a new asso-
ciation (address′ = α′r(Contact′, Address′)). The designer sets the name of
the association (υ′name

r (address′, “address“)) and interpretation (υ′int
r (address′,

address)). Now the preconditions allow for moving the attributes from Contact’
to Address’ (υ′class

a (street′, Address′), . . .). The designer moreover needs to
specify that a customer has one or two addresses (υ′card

r (address′, 1..2)). The
result is depicted in Figure 8.5(e). Later, (s)he similarly moves the attribute
gps’ to a new class GPS’ and splits it into two new attributes longitude’ and
latitude’ as depicted in Figure 8.5(f).

Fourth, the PIM schema now distinguishes two different addresses - shipping
and billing. The designer needs to reflect this change in the PSM schema by

90

Figure 8.5: Evolution of a sample PSM schema demonstrating the introduced
creation, update, removal and synchronization atomic operations

splitting the association address’ correspondingly. However, the change is more
complex than in case of the PIM schema, because the resulting PSM schema must
be a tree. (S)he first needs to create new classes ShipAddr’ and BillAddr’, set
their names, and set their interpretation to PIM class Address. Now (s)he may
split address’. (S)he creates two new associations shipto’ and billto’ con-
necting Contact’ with ShipAddr’ and BillAddr’, respectively. (S)he sets their
names and interpretations to PIM associations shipto and billto, respective-
ly. (S)he also sets cardinality of billto’ to 0..1. Then, (s)he synchronizes
the original association with the new ones (σ′r({address′}, {shipto′, billto′}))
and removes the original one (δ′r(address′)). (S)he wants both new address-
es to model the same XML fragments as the original one and (s)he, there-
fore, sets ShipAddr’ and BillAddr’ as structural representatives of Address’
(υ′repr

c (ShipAddr’, Address’), . . .).

In the final step, the designer needs to reflect in the PSM schema recon-
necting the association gps in the PIM schema. The impact of this change to
the PSM schema is that both, shipping and billing address have GPS infor-
mation. Therefore, the designer needs to reconnect gps’ association to class
Address’. This requires two atomic reconnections of gps’. First, from class
Contact’ to class ShipAddr’ (υ′class

r (gps′, ShipAddr′)) and then to Address’
(υ′class

r (gps′, Address′)). Note that both reconnections are allowed by the opera-
tion precondition. In the first case the reconnection is between classes connected
by an association. In the other case, the reconnection is between a structural
representative and its referenced class.

91

8.5 Propagation of Atomic Operations
According to Section 6.3, an interpretation of a PSM schema S ′ against a PIM
schema S must be consistent. When S or S ′ is modified by an atomic operation,
one or more conditions necessary for consistency may be violated and, conse-
quently, the interpretation or the other schema must be adapted accordingly. We
call the process which ensures the adaptation propagation of the atomic opera-
tion. In the example in the previous section we showed how a designer can solve
this issue manually (our designer performed a sequence of operations in the PIM
schema and then (s)he needed to perform similar steps in the PSM schema). In
this section, we show how the propagation can be automated. If we consider the
fact that there may be many PSM schemas affected, automation is very helpful.

8.5.1 Propagation from PIM to PSM Level
In this section, we describe how introduced atomic operations executed on the
PIM schema S are propagated to each PSM schema S ′ ∈ PSM and its inter-
pretation I against S. We will demonstrate the propagation on our sample PIM
and PSM schema evolution depicted in Figure 8.4 and 8.5, respectively. We sup-
pose that the designer manually changes the PIM schema in the steps depicted
in Figure 8.4. In Section 8.4.2 we showed in Figure 8.5 how the designer man-
ually adapts the PSM schema according to the changes in the PIM schema. In
this section we show that our propagation mechanism is able to adapt the PSM
schema automatically which reduces the designer’s manual work.

Creating PIM Components Let us start with propagating the creation op-
erations. Creating a new component X in S does not automatically imply the
existence of any component in S ′. This is because the creation does not violate
Definition 6.5. Moreover, X models a new part of the reality which has no repre-
sentation in the PSM schemas, where its creation could be propagated. It is up
to the designer, whether to create new components in the PSM schemas which
represent this new part of the reality, or not. Therefore, the creation operations
are not propagated.

Let us consider the evolution of our sample PIM schema depicted in Fig-
ure 8.4(e). Here, the designer first created a new class Address and association
address. These operations on their own do not automatically result in creat-
ing new classes and associations in the PSM schemas. It is up to the designer
whether to propagate them, or not. For example, (s)he later decides to move
some attributes from Customer to Address. In that case it is necessary to create
new classes with Address as their interpretation in the PSM schemas, because
we need to correspondingly move attributes in the PSM schemas.

Updating PIM Components An update of a component X of S may have
an impact on each component X ′ in the PSM schema with I(X ′) = X and its
propagation may be necessary. More specifically, an update of the name of X is
propagated to an optional update of the name of X ′. This is because X and X ′
do not necessarily need to share the same name. On the other hand, an update

92

of the type or cardinality of X is propagated to a mandatory update of the type
or cardinality of X ′.

In our sample PIM schema evolution depicted in Figure 8.4(f), the cardinality
of the association endpoint of association address connected to class Address was
updated from 1..1 to 1..2. This is automatically propagated by our mechanism
to all associations in the PSM schemas with address as an interpretation. For
example, it is propagated to association address′ depicted in Figure 8.5(f).

The propagation of the two remaining update operations, i.e. moving an at-
tribute and reconnecting an association end, is more complex. Both operations
modify the structure of S which may break the consistency of the interpretation.
The impact on the structure of S ′ may be quite extensive and it would be almost
impossible for the designer to manage the impact manually. The idea of propa-
gation is similar for both operations even though reconnecting an association end
is technically more complicated. However, we will discuss only the first one.

Suppose that υclass
a (A,D) was performed. In other words, an attribute A in

the PIM schema was moved from its current class C to another class D. Consider
an attribute A′ in the PSM schema s.t. I(A′) = A. Since the interpretation is
consistent, we see that class(A′) = C ′ s.t. intcontext(C ′) = C = class(A). By
executing υclass

a (A,D) we get class(A) = D. We see that, on one hand, A′ is
semantically an attribute of C. On the other hand, we see that the semantics is
A which is an attribute of D 6= C.

Therefore, the move of A must be propagated to a corresponding move of
A′. Concretely, we have to move A′ to a class with an interpretation D to make
the interpretation consistent. The move and its propagation is illustrated in
Figure 8.6. Figure 8.6(a) contains a PIM schema fragment before executing the
operation (on the left hand side of the thick arrow) and the fragment after the
move (on the right hand side). Figures 8.6(b)-(c) contain three PSM schema
fragments before and after the propagation. They illustrate three basic situations
which may occur.

Suppose class C ′ in the PSM schema with interpretation C. Let A′ be an
attribute of C ′ with an interpretation A. The first situation is depicted in Fig-
ure 8.6(b). Here, C ′ contains an association R′ with an interpretation R. Its
child is class D′ with an interpretation D. In this case the propagation means
moving A′ to D′ which makes the interpretation consistent. The second situation
is depicted in Figure 8.6(c). Here, there is an association R′ with an interpreta-
tion R which goes to C ′. Its parent is class D′ with an interpretation D. Again,
this case means moving A′ to D′. The last situation is depicted in Figures 8.6(d).
Here, there is no association connected to C ′ and with an interpretation R. In
this case, propagation means creating a new association R′ with an interpreta-
tion R connecting C ′ and a new class D′ with an interpretation D. A′ may be
again moved to D′. Also there are some other situations which differ from the
three demonstrated only in technical details. This includes situations with con-
tent models or classes without an interpretation on the path between C ′ and D′.
We have solved these situations in our implementation but do not specify them
in this chapter.

In a general case, there can be more and different associations R1, . . ., Rn

connecting C and D. There are associations R′1, . . ., R′n connected to C ′ with
directed images of R1, . . ., Rn as interpretations, respectively. If some R′i is

93

Figure 8.6: Visualization of the mechanism for propagating the operation for
moving PIM attributes

missing, we ask a designer if it should be created2. If we apply the previous idea,
we get up to C ′v,1, . . ., C ′v,n classes, where A′ should be moved. However, such
move is not possible. Instead, we make a copy A′i of A′ for each C ′v,i and move the
copy to C ′v,i. Making a copy means the following sequence of atomic operations:
(1) creating A′i, (2) synchronizing it with A′ (it is important since it specifies that
A′ and A′i model the same information), (3) setting the properties of A′i to the
same values as A′ and (4) moving A′i.

In our sample evolution depicted in Figure 8.4(e), the designer moved at-
tributes street, city and country from class Customer to class Address. This
makes the interpretation of the PSM schema depicted in Figure 8.5(d) inconsis-
tent. There are attributes street′, city′ and country′ having the moved PIM
attributes as their interpretation. Our propagation mechanism ensures automat-
ically that the attributes are moved correspondingly so that the interpretation is
consistent again as depicted in Figure 8.5(e). First, the mechanism automatically
creates a new class Address′ which was not present in the PSM schema and con-
nects it with class Contact′ by a new association. Then, it automatically moves
the attributes.

Removing PIM Components Removing components of S must be propagat-
ed by removing corresponding components of S ′ or setting their interpretations to
λ to keep the interpretation consistent. More specifically, removing an attribute
A leads to removing each attribute A′ in S ′ s.t. I(A′) = A or setting I(A′) = λ.
Both solutions are correct (i.e. they do not break the consistency of interpreta-
tion) and, therefore, the designer has to decide. Removing an association leads
mandatorily to removing each association R′ in S ′ s.t. I(R′) is a directed image
of R. We cannot set I(R′) = λ. This is because condition (3) of Definition 6.7,
R′ with a non-empty interpretation has a child with an non-empty interpretation
and vice versa. Setting I(R′) to λ would break this condition. And, finally, re-
moving a class C leads to removing each class C ′ in S ′ s.t. I(C ′) = C or setting

2If all of them are missing and the designer decides not to create any, no propagation is
performed.

94

I(C ′) to λ. Both possibilities are correct. From the precondition of the operation
for removing a class, C has no attributes and there are no associations connected
to C. Because of conditions (2) and (3) of Definition 6.7, there is no attribute
or association in S ′ in the interpreted context of C ′ with an non-empty interpre-
tation. Therefore, it is possible to set I(C ′) = λ. It is also possible to remove
C ′. However, it may have attributes and there may be associations connected
to C ′ with empty interpretations. These must be removed first. There are also
some technical details we do not discuss further. For example, parent ends of
the associations going from C ′ may be reconnected to the parent of C ′ in certain
cases etc.

In our sample evolution depicted in Figure 8.4(b), the designer removed as-
sociation responsibility and class Partner with its attribute code. The prop-
agation mechanism ensured that the corresponding components in our sample
PSM schema were removed after a dialogue with the designer as depicted in
Figure 8.5(b).

Synchronizing PIM Components Synchronizing two sets X1 and X2 of com-
ponents of S means that the existence of both sets must be synchronized at all
levels. Whenever there is an equivalent to X1 in the PSM schema S ′ there must
also be an equivalent to X2 and vice versa.

The operation for synchronization of attributes, i.e. σa(X1,X2), only enables
one to synchronize two sets of attributes which have a common class C. Let
C ′ be a class s.t. I(C ′) = C which contains attributes whose interpretations
are all attributes from X1. Since X1 and X2 are semantically equivalent, our
propagation mechanism interprets this as a fact that C ′ must be supplemented
with new attributes so that it contains attributes whose interpretations are all
attributes from X2 as well (and conversely). (There are some technical details we
do not discuss in more detail.) First, we have to consider also all attributes of
repr(C ′) if repr(C ′) 6= λ. Second, we have to consider all attributes with C ′ as
an interpreted context, not only the attributes of C ′.

In our sample evolution depicted in Figure 8.4(c), the designer split the origi-
nal attribute address into three new attributes street, city and country. For
this, after the creation of the new attributes (which is not propagated to the
PSM level as we have already discussed), the designer synchronized the original
attribute with the new ones. The synchronization is automatically propagated
by our mechanism as follows: wherever there is an attribute address′ with inter-
pretation address in a PSM schema, create three new attributes street′, city′

and country′ and synchronize them with address′. The result of this automatic
propagation is depicted in Figure 8.5(c). Note that after the synchronization,
the designer removed the original attribute address. This was propagated by
our mechanism to removing the attribute address′ in the PSM schema after the
decision of the designer.

The operation for synchronization of associations, i.e. σr(X1,X2), is very simi-
lar to the previous case. Again, when their common class C ′ contains associations
whose interpretations are directed images of all associations from X1, it must be
supplemented so that it contains associations whose interpretations are directed
images of all associations from X2, and vice versa. Again, there are technical
details we omit for space limitations, i.e. we must not forget those associations

95

that are implicitly in the content of C ′ – it is a structural representative and we
must consider not only associations which have C ′ as a parent but all which have
C ′ as their interpreted context.

Synchronization of associations is demonstrated in Figure 8.4(g), where the
designer split association address into two new associations shipto and billto.
The result of automatic propagation is depicted in Figure 8.5(g).

8.5.2 Propagation from PSM to PIM Level
In this section, we describe the opposite direction of propagation, i.e. how op-
erations executed on a PSM schema S ′ ∈ PSM are propagated to the PIM
schema S. Again, we will demonstrate the propagation on our sample PIM and
PSM schema evolution depicted in Figure 8.4 and Figure 8.5, respectively. Now,
we will, however, suppose that the designer manually changes the PSM schema
according to the steps depicted in Figure 8.5. We show how our propagation
mechanism ensures that the PIM schema is adapted automatically.

Creating PSM Components Creating a new component in S ′ does not di-
rectly imply an existence of any component in S and, therefore, creation opera-
tions are not propagated from PSM to the PIM level. For example, when creating
a new class Address′ and association address′, connecting Contact′ and Address′

in Figure 8.5(e) does not imply creating a corresponding class and association in
the PIM schema. The creation will be performed in the PIM schema only when
it is explicitly required by the designer. The propagation mechanism then also
ensures that interpretations of the class and association in the PSM schema are
set correctly. The result is depicted in Figure 8.4(e).

Updating PSM Components Updating components in S ′ has an effect on
corresponding components in S with some exceptions; there are updates with no
effect on the PIM schema S, because the updated properties have no equivalent
in S. This includes updating a structural representative of a class, updating the
position or XML form of an attribute and updating the position of an association.
There are also updates which are only optionally propagated to S. This is similar
to the other direction; for example, changing a name of an attribute. And, there
are operations which are propagated mandatorily. The simple case is, for example,
updating a cardinality which is propagated in a straightforward manner. And, as
in the other direction, there are two operations whose propagation is mandatory
and more complex: moving an attribute and reconnecting an association end.

When the interpretation of a moved attribute or reconnected association is
empty, the change is not propagated at all to S. This is because the updated
component has no equivalent in S and, therefore, consistency of interpretation is
not broken. Similarly, no propagation is necessary when the interpreted context
of the updated component has not changed. In that case, there is no change from
the conceptual point of view.

For example, suppose the PSM schema in Figure 8.5(b). Let the designer move
attribute address′ from class Contact′ to Customer′. The move is within the
same interpreted context (which is class Customer′) and, therefore, the attribute

96

was not moved from the conceptual perspective and its interpretation remains
consistent. No propagation is necessary in this case.

In other cases, propagation is necessary. However, except for the technical
details, the principles of the propagation are similar to the other direction and so,
we omit their detailed description. For example, suppose that the designer moves
attributes street′, city′ and country′ from class Contact′ to class Address
as depicted in Figure 8.5(e). The interpreted context is changed (from class
Customer′ to class Address′). Our propagation mechanism automatically ensures
that the interpretations of the three attributes (i.e. street, city and country)
are moved correspondingly in the PIM schema. The resulting PIM schema is
depicted in Figure 8.4(e).

Removing PSM Components Similar to the updates, removing a component
from S ′ is not propagated to S when the removed component has an empty
interpretation. Removing a PSM component X ′ with an interpretation X may
imply removing X when there are no other PSM components with interpretation
X. However, even when there are no PSM components with interpretation X,
we do not remove X ′ automatically. This is because PSM schemas are only views
of the whole domain modeled by the PIM schema. Absence of a given concept
modeled by X in the views does not imply the necessity of removing X from the
PIM schema. The removal of X is, therefore, only optional.

For example, when the designer removes class Partner′ as depicted in Fig-
ure 8.5(b), the propagation mechanism asks the designer whether the correspond-
ing class Partner in the PIM schema should be removed as well, or not. In our
case, the designer decides to remove Partner as depicted in Figure 8.4(b).

Synchronization of PSM Components Synchronization of two sets X ′1 and
X ′2 is propagated from S to S ′ very similarly as in the opposite direction. The
only difference is that there are components in X ′1 and X ′2 with and without an
interpretation. If X ′1 (or X ′2) contains only components with an interpretation, its
semantic equivalent exists in S and each componentX ′ of X ′2 (or X ′1), respectively,
which does not have an interpretation is, therefore, propagated to S. Propagation
means creating a new component X corresponding to X ′ and setting I(X ′) = X.
Otherwise, the synchronization is not propagated to the PIM level, because an
equivalent of X ′1 or (or X ′2, respectively) does not exist in S.

Sample synchronization operations are demonstrated in Figure 8.5(c) (at-
tribute synchronization) and Figure 8.5(g) (association synchronization). They
are automatically propagated by our mechanism to the PIM schema as depicted
in Figure 8.4(c) and Figure 8.4(g), respectively.

8.5.3 Minimality and Correctness of Atomic Operations
Important properties of any set of atomic operations are their minimality and
correctness. Minimality means that there is no atomic operation which could be
expressed as a sequence of other atomic operations. Correctness means that the
proposed operations are correct. In our specific case it means not only that an
atomic operation transforms a schema from a consistent state to another consis-
tent state but also that the propagation mechanism preserves the consistency of

97

interpretations of PSM schemas to PIM schemas.

Theorem 8.1 The set of atomic operations is minimal.

Proof 8.1 Assume the operations for evolution of classes in the PIM schema,
i.e. αc, δc and υname

c . Without αc we are not able to create any class. Similarly,
without δc we are not able to remove any class. Finally, without υname

c we are not
able to change the class name. It cannot be set during the creation, because αc

sets a default name. The proof for other atomic operations for creating, removing
and updating PIM and PSM components is similar. The operations for synchro-
nizing two sets of attributes or associations are clearly atomic as well. No other
operation allows for synchronization.

Theorem 8.2 The set of atomic operations together with the propagation mech-
anism is correct.

Proof 8.2 We have already proved the correctness in the previous text. In Sec-
tion 8.4.2 we have shown that the preconditions of operations for updating inter-
pretations of PSM components ensure that the consistency of interpretation can
not be broken. In Sections 8.5.1 and 8.5.2 we have shown that the propagation
mechanism repairs the consistency of interpretation when broken by moving at-
tributes, reconnecting associations ends and removing components. We have also
shown that the other operations do not touch the consistency at all. And, finally,
we have shown in these sections that whenever the propagation mechanism needs
to perform a sequence of atomic operations to repair the consistency of inter-
pretation, the preconditions of these operations are always satisfied so that the
sequence may be performed in any time.

8.5.4 Completeness of Atomic Operations
Sometimes completeness is understood as a property which ensures that for any
two given schemas there always exists a sequence of atomic operations which
transform one of the schemas to the other. The sequence usually removes all
components of the former schema and creates the components of the other. This is
not a correct proof of completeness, because it does not consider possible semantic
relationships between the components of both schemas. The old components are
simply removed and the new ones are created without preserving the semantic
relationships. However, this only covers the structural part of the schema. What
we also aim for is preserving the semantic part of the schemas. This is largely
dependent on the user and his/her interpretation of the meaning of the schemas.

However, even if semantic relationships are considered (e.g. semantic equiv-
alence in our case) it is not easy to prove general completeness formally. Even
though such proof would be interesting from the theoretical point of view, it is
beyond the scope of this chapter. Instead, our aim is to demonstrate complete-
ness practically. In this chapter we provide a case study of a real world system,
where we applied our approach. It experimentally shows that the proposed set
of atomic operations is complete. The case study can be found in Section 8.8.

98

8.6 Composite Operations
The atomic operations introduced formally in the previous sections were proposed
so that they form minimal and correct set as proven above. Naturally, they are
not supposed to be used directly by the user in all cases and it is not the whole
set of available operations. In this section we show examples how the atomic
operations can form more user-friendly and realistic composite operations.

Formally, a composite operation is a sequence of two or more atomic opera-
tions. As we have shown in the previous text, propagation mechanism ensures
that any atomic operation does not corrupt the consistency of affected interpreta-
tions. Therefore, composition of atomic operations preserves consistency as well
and it is not necessary to extend the propagation mechanism with specifics of the
composition.

Creation with Parameters A simple composite operation necessary in every
system is creating a particular component with pre-set values. We show such case
in the operation createPIMAttr(C, n, t, c) which allows for creating of a PIM
attribute in a class C with name n, data type t and cardinality c. It consists of
the following steps:

A = αa(C); υname
a (A, n); υtype

a (A, t); υcard
a (A, c)

The propagation mechanism optionally creates corresponding PSM components.

Splitting of a PIM Attribute This operation is a typical example of drill-
down modeling, i.e. creating more and more precise data structures. An example
of such an operation is shown in Figure 8.4(c), where the designer needs to detail
a single-valued address of a customer to street, city and country. In general,
the composite operation splitPIMAttr(A, {n1, n2, ..., nk}) for splitting a PIM
attribute A of a class C to a set of attributes with names {n1, n2, ..., nk} consists
of the following steps:

A1 = createPIMAttr(C, n1, type(A), card(A));
. . . ;
Ak = createPIMAttr(C, nk, type(A), card(A));
σa({A}, {A1, A2, ..., Ak}); δa(A)

The propagation mechanism, in particular in case of synchronization, ensures
that all the PSM attributes representing A are replaced with PSM attributes
representing A1, A2, . . ., Ak.

In our sample depicted in Figure 8.4(c), the designer would execute a single
composite operation splitPIMAttr (address, {“street“, “city“, “country“}).

Removing a PSM Tree In the previous case we have shown an example of
a composite operation which consists of a sequence of atomic operations and a
composite operation which consists of atomic and other composite operations.
Operation removePSMtree(C ′) for removing a PSM tree rooted at class C ′ is an
example of a recursive composite operation, i.e. it calls itself if necessary. The
operation consists of the following steps:

99

1. (∀R′ ∈ content(C ′)) removePSMtree(child(R′));

2. (∀A′ ∈ attributes(C ′)) δa(A′);

3. (∀R′p ∈ S ′r s.t. child(R′p) = C ′)(δr(R′));

4. δc(C ′);

Naturally, we cannot provide the full list of possible composite operations,
as the particular set depends on the choice of the vendor of a particular system
and the requirements of users. Our aim was to demonstrate that the proposed
mechanism can be used in real-world situations.

8.7 Related Work
The current approaches towards evolution management can be classified accord-
ing to distinct aspects [74, 34]. The changes and transformations can be expressed
[104, 21] as well as divided [28] variously too. However, to our knowledge there
exists no general framework comparable to our proposal in Section 8.3; particu-
lar cases and views of the problem have previously only been solved separately,
superficially and mostly imprecisely without any theoretical or formal basis. In
this section we describe the closest and most advanced approaches related to our
proposal.

XML schema

XML

documents

XML

documents
XML queries

XML schema

XML schema

visualisation

Platform-Independent

Level

Platform-Specific

Level

Schema

Level

Operational

Level

Extensional

Level XML

data

data

storage

XML

data

SQL DDL

(a) (b)

XML schema

UML diagram

XML

data

(c) (d) (e)

BP PSM

diagram

BPEL script

Application

(h)

XML schema

data

storage

SQL DDL

XML

documents

XML

documents
SQL queries

(f)

ER diagram

SQL DDL

(g)

UML diagram

change

suggestions

(i) (j)

business

protocol

replaceability

suggestions

XML view Storage view Processing view

Figure 8.7: Current XML evolution approaches

XML View We can divide the current approaches to XML schema evolution
and change management into several groups as depicted in Figure 8.7. Approach-
es in the first group (a) consider changes at the schema level and differ in the
selected XML schema language, i.e. DTD [2, 31] or XML Schema [127, 24].
In general, the transformations can be variously classified. For instance, paper
[127] proposes migratory (e.g. movements of elements/attributes), structural (e.g.
adding/removal of elements/attributes) and sedentary (e.g. modifications of sim-
ple data types). The changes are expressed variously and more or less formally.
For instance in [24] a language called XSUpdate is described. The changes are
then automatically propagated to the extensional level to ensure validity of XML
data. There also exists an opposite approach that enables one to evolve XML
documents and propagate the changes to their XML schema [22]. Approaches in

100

the second (b) and third (c) group are similar, but they consider changes at an
abstraction of logical level – either visualization [53] or a kind of UML diagram
[39]. Both cases work at the PSM level, since they directly model XML schemas
with their abstraction. No PIM schema is considered. All approaches consider
only a single separate XML schema being evolved.

Another open problem related to schema evolution is adaptation of the re-
spective XML queries, i.e. propagation to the operational level (Figure 8.7(d)).
Unfortunately, the amount of existing works is relatively low. Paper [80] gives
recommendations on how to write queries that do not need to be adapted for
an evolving schema. On the other hand, in [44] the authors consider a subset of
XPath 1.0 constructs and study the impact of XML schema changes on them.

In all the papers cited the authors consider only a single XML schema. In
[111] multiple local XML schemas are considered and mapped to a global object-
oriented schema. Then, the authors discuss possible operations with a local
schema and their propagation to the global schema. However, the global schema
does not represent a common problem domain, but a common integrated schema;
the changes are propagated just upwards and the operations are not defined rig-
orously. The need for well defined set of simple operations and their combination
is clearly identified in Section 6 of a recent survey of schema matching and map-
ping [14].

Storage View The idea of evolution and change management in XML storage
strategies is currently focused particularly on data updates and, usually, joined
with XQuery Update Facility [25]. However, this is not the area we are dealing
with since the updates are mostly considered within the respective XML schema.
As depicted in Figure 8.7(e), in the area of evolution of general database schemas
we can find approaches that focus on evolution of (object-)relational schemas
[32, 33] as well as object-oriented schemas [12, 68]. Similar to the case of XML
schema evolution, there are also approaches that deal with propagation from an
ER schema, i.e. PSM level, to a relational schema [8], i.e. schema level (Figure
8.7(f)) or propagation to an operational level [32] (Figure 8.7(g)).

In the purely XML-related approaches we need to consider schema-driven
storage strategies. As surveyed in [122], the amount of the respective approaches
is not high. We can find first attempts of change propagation in the current
leading object-relational database management systems –Oracle DB3, IBM DB2 4

and Microsoft SQL Server5. In this case we can differentiate two types of schema
evolution – whether backward compatibility of the changes, i.e. preservation of
data validity, is required, or not. Both the DB2 and SQL Server require the
backward compatibility. Oracle DB also supports change propagation regardless
backward compatibility; however, it is not done automatically; a data expert
must provide an XSLT script which re-validates the stored XML documents. To
ease this approach we have recently proposed an algorithm that enables one to
provide such transformation script semi-automatically [71].

3http://www.oracle.com/us/products/database/
4http://www-01.ibm.com/software/data/db2/
5http://www.microsoft.com/sqlserver/2008/en/us/

101

http://www.oracle.com/us/products/database/
http://www-01.ibm.com/software/data/db2/
http://www.microsoft.com/sqlserver/2008/en/us/

Processing View Since we are considering the area of evolution of XML ap-
plications, we cannot omit the most popular application of XML format – Web
Services. Currently we can find several approaches that deal with evolution of
Web Service; however, again they solve just part of the issues described [1]. In
[123] the authors describe a plugin to IBM Rational Software Architect (RSA)6

which enables semi-automatic propagation of changes from business process mod-
el of Web Services (Figure 8.7(h)) to respective BPEL scripts and thus respective
applications. It is one of the frameworks that are very close to our proposal
described in Section 8.3; however, the authors do not provide any theoretical
background on the allowed changes or details on the propagation mechanisms. A
different approach (Figure 8.7(i)) is used in system Morpheus [114], also based on
IBM RSA. At the platform-specific level it considers three UML artifacts – use
cases, sequence diagrams and service specifications – and the change propagation
among them. The output of the propagation is a set of change suggestions for
the respective execution part which should be then done manually by an expert.
Similarly, in [118] (Figure 8.7(j)) the authors deal with change propagation of
business protocols of Web Services, i.e. a kind of activity diagrams. The out-
put of the system is a set of recommendations detailing when affected parts are
replaceable/migrateable and under what circumstances. Again, the migration is
expected to be done by a system expert; however, the system advises how to
perform it correctly.

In [9] the authors solve the problem using a completely different strategy.
They provide an abstract service definition model (ASD) which enables us to
model all related concepts of a Web Service, i.e. data structures, behavior and
policies at a conceptual level using UML class diagrams. Both ASD and the re-
lated operations are defined formally and the completeness and correctness of the
operations is proven. On the other hand, change propagation to respective PSMs
is not considered and the ASD itself is relatively unnatural. And, considering
even more formal approaches and model, in [10] the authors model the Web Ser-
vices using Formal Concept Analysis and, in particular, lattices or in [125] using
lenses and monoids of edits. However, though the approaches are theoretically
very interesting, our aim is to provide less complex and more user-friendly formal
background and tools.

8.8 Case Study and Evaluation
As has already been mentioned, we have implemented the proposed technique in
a tool called eXolutio [55]. In general, it is a proof-of-concept desktop application
for conceptual XML data modeling. It implements the PIM and PSM modeling
languages and operations for evolution of the PIM and PSM schemas described in
this chapter. It provides a designer with a set of operations which are composed
of the atomic operations described in Section 8.4. It implements the propagation
mechanism introduced in Section 8.5. At the highest level, eXolutio is based on
a well known Model View Controller (MVC) design pattern.

Currently, for the purpose of this chapter, the atomic operations are imple-
mented in the exact same way they are described here. We use the implementation

6http://www-01.ibm.com/software/awdtools/architect/swarchitect/

102

http://www-01.ibm.com/software/awdtools/architect/swarchitect/

to experimentally demonstrate that the proposed set of atomic operations is com-
plete, i.e. that the atomic operations are sufficient for real-world situations. As
we have already discussed in Section 8.5.4, we do not prove completeness formally
in this chapter. As to performance and scalability, it is a fact that a single atomic
operation on a PIM schema can lead to a large number of operations in each
of the affected PSM schemas. This number can be reduced by some optimiza-
tions, improving both performance and scalability. So far, our implementation
is strictly based on our formal model and focuses on the clear demonstration of
our ideas. The issues of performance and scalability will be addressed in lat-
er stages of development. It is now clear that some complex operations are far
more efficient if they are implemented from scratch, rather than by combining
the individual atomic operations. This also holds true for some cases of change
propagation. Still, it will always be necessary to prove that the optimized version
of the operation has the same formal properties as the non-optimized version
would have, which is possible again thanks to our formal model. In addition,
many operations are in fact interactive. For example, the designer will choose to
which PSM schemas a change will be propagated, in which case the actual time
spent by performing the operation will always be comparatively negligible.

In the concluding part of this section we show how the developed technique for
designing a family of XML schemas and their evolution on a real-world system
was applied. And, finally, we evaluate our technique on the basis of this case
study and compare it with other known techniques for XML schema evolution.

8.8.1 Case Study: National Register for Public Procure-
ment

Our case study is the National Register for Public Procurement (NRPP)7. It is a
governmental information system intended for publishing data about public con-
tracts by public authorities in the Czech Republic. Publishing a contract is only
obligatory when the contracted price exceeds a level given by the current legis-
lation; otherwise, it is optional. Authorities send contract information formatted
according to one of the 17 XML formats accepted by the NRPP. This includes,
e.g. XML format for contract notifications, supplier selection notifications, etc.

Currently, the NRPP only provides a textual documentation for the XML
formats and a set of sample XML documents. There are neither XML schemas
for the XML formats, nor a conceptual schema of the problem domain. Therefore,
our first goal was to design not only the XML schemas but also the conceptual
schema in a form of a PIM schema and derive PSM schemas for the XML formats
from the PIM schema. The resulting PIM schema is depicted in Figure 8.8 (a).
Two of the resulting PSM schemas are depicted in Figures 8.9 (a) and 8.9 (b).
The PSM schemas are mapped to the PIM schema. The mapping is intuitive and
we do not describe it here. The PSM schemas were created exactly according
to the textual documentation and XML examples. Let us note that the original
schemas we created are more extensive. Due to space limitations, we present here
only those parts that bear on our work.

The PIM schema contains classes which model public contracts (class Con-
tract) and their procurers and suppliers (class Organization). There are also some

7http://www.isvz.cz (in Czech only)

103

http://www.isvz.cz

Figure 8.8: (a) PIM schema modeling the NRPP domain, (b) PIM schema evolved
according to new requirements.

additional concepts modeled – prices (class Price) and contact information (class
Contact). There are several relationships modeled with associations. A supplier
is associated with a contract by supplied_by association. A procurer is associated
with a contract by a path of associations has_contact and main. Each contract
has additional contact information – where documentation for the contract is
provided (association docs) and where bids to the contract are collected (associ-
ation bids). Finally, there are four different prices – expected price (association
expected), the best offered price (association offered), price agreed by a select-
ed supplier and procurer (association agreed), and a final real price known after
finishing the contract (association final).

The PSM schema depicted in Figure 8.9 (a) models an XML format for no-
tifications about a new public contract. When a public authority issues a new
contract, it must send a notification about the contract to the the NRPP using
this format; it should contain contact information and basic information about
the contract. The other PSM schema depicted in Figure 8.9 (b) models an XML
format for notifications about the supplier selected for the contract; it contains
the main contract contact, information about the number of offered bids, selected
supplier and offered and agreed price.

The numbers of atomic operations executed to create the PIM and PSM
schemas are depicted in Figure 8.10(a). It shows that only creation and update
operations were used.

There were several issues to solve in this case study. First, the NRPP provides
only XML formats which are used by public authorities to send data about their
contracts to the NRPP. There are no XML formats for providing information
back to the public authorities and other users, e.g. procurer or supplier detail.
We show how our approach may be used to easily design such XML formats
in a form of PSM schemas on the basis of the existing PIM schema. One such
PSM schema which models XML formats for public procurer details is depicted
in Figure 8.9 (c). The numbers of the atomic operations executed at this step are
depicted in Figure 8.10(b). Again, only the creation and update operations were
performed. Even though the designer needs to design the PSM schemas for the
new XML formats manually, the experiment clearly showed that our approach
saves him/her a great deal of work and prevents him/her from making unnecessary
errors. This is because our technique enables us to create the PSM schemas on the
basis of the PIM schema (which is quicker than creating PSM schemas separately)

104

Figure 8.9: PSM schemas modeling XML formats for (a) sending contract noti-
fications to NRP, (b) reporting on contract supplier selection to the NRPP, and
(c) representing procurer detail

and ensures that the designer creates the PSM schemas coherently with the PIM
schema (as it preserves the consistency of the interpretation). The designer needs
not check whether the PSM schema is semantically correct, or not.

Second, as the reader may have noticed, the quality of the XML formats is low.
The designers of the XML formats did not follow basic XML design principles
(e.g. exploiting the hierarchical nature of XML); for example, contact informa-
tion is modeled by XML elements with names prefixed with cont_, docs_, etc.
It would have been better to remove the prefixes and enclose the semantically
related XML elements into separate XML elements (e.g. enclose contact XML
elements to XML element contact structured to main, doc, etc. or enclose all
information related to the supplier into XML element supplier). We have made
these adaptations in the present XML formats. Some PSM schema components
also appeared which had the same content and we, therefore, used structural
representatives to declare the shared content only once. The numbers of the
executed atomic operations are depicted in Figure 8.10(c). In this step, synchro-
nization and removal operations were also used, because some of the old parts of
the PSM schemas were replaced by new ones. Again, the experiment demonstrat-
ed that our approach saves a lot of work as it preserves the consistency of PSM
schemas against the PIM schema. If the designer makes a change which affects
the PIM schema and, possibly, other PSM schemas, our propagation mechanism
will notify him/her. We depict the evolved PSM schema from Figure 8.9 (b) in
Figure 8.11(b) (it also includes changes described in the following steps). The
other PSM schema was evolved similarly. As the reader may see, contact in-
formation is now represented hierarchically. Also, the PSM schema is simplified
by using structural representatives referring to shared classes contained in a new
separate PSM schema depicted in Figure 8.11(a).

Third, we implemented various changes which resulted from new requirements
on the NRPP functionality and from new legislation. In both cases, changes to
the PIM schema needed to be done. The new functionalities required us to model

105

0

50

100

150

200

250

300

α ν δ σ

0

100

200

300

400

500

600

α ν δ σ

0

20

40

60

80

100

120

α ν δ σ

0

50

100

150

200

250

300

350

400

450

α ν δ σ

(a) (b) (c) (d)

Figure 8.10: Numbers of atomic operations performed manually by the designer
(dark gray) and automatically by the propagation mechanism (light gray)

contact persons as a special class instead of attribute contact_person. Therefore,
we evolved the attribute to a new class Person associated with Contact and with
two new attributes first_name and surname using our evolution operations.

The new legislation required to report not only the number of bids received for
each contract, but also particular bids including the bidding supplier and offered
price. Therefore, we replaced the attribute number_of_bids with a new class
Bid with several new attributes. We changed the semantics of supplied_by and
offered associations by reconnecting them from Contract class to the new Bid
class. Finally, we distinguished the winning bid from the other bids by splitting
the association connecting Bid and Contract classes into two associations offer
and win. The evolved PIM schema is depicted in Figure 8.8 (b). Since the PIM
schema changed, the PSM schemas needed to be adapted accordingly. This was
ensured by our propagation mechanism. Figures 8.11(b) and 8.11(c) show how
PSM schemas depicted in Figures 8.9 (b) and 8.9 (c) were automatically adapted
by the propagation mechanism, respectively.

Finally, there was a requirement to update the XML format for contract noti-
fications (Figure 8.9 (a)) so that it is possible to give notification not only on the
expected months and days in which the contract should be finished, but also on
the exact date. Therefore, we added a new attribute exp_date which can be used
equivalently instead of two present attributes exp_months and exp_years. This
change was correctly propagated to the PIM schema, because it is a conceptual
change (see Figure 8.8 (b)). From here, it was propagated to the other PSM
schemas (see Figure 8.11(c)).

The numbers of the atomic operations executed during the last two steps
are depicted in Figure 8.10(d). The darker part shows the numbers of manually
executed operations. The lighter part shows the numbers of operations executed
automatically by the propagation mechanism.

8.8.2 Evaluation and Comparison to Other Approaches
The following conclusions are drawn from the above case study:

• All proposed atomic operations are necessary for real-world scenarios as
summarized in Figure 8.10. The necessity for the creation and updating
of atomic operations is clear. The case study showed that we also need
removal operations even though we do not want to directly remove parts of

106

Figure 8.11: (a) PSM schema with common components shared between other
PSM schemas, (b) evolved PSM schema for reporting on contract supplier selec-
tion to the NRPP, (c) evolved PSM schema for representing procurer detail

data but represent them in more (or less) detailed structures (e.g. splitting
attributes). For this, we also need synchronization operations.

• The case study also demonstrates the completeness of the proposed set of
atomic operations. Most real-world scenarios we target in our work will be
similar to the presented case study (i.e. extending existing schemas with
new parts and replacing their existing parts with more (or less) detailed
alternatives). For this kind of scenarios our proposed set of operations is
complete. On the other hand, there are some limitations. For example,
when synchronizing two sets of attributes, we can not exactly specify a
function which would transform values between both sets. However, we are
not interested in data transformations in this chapter but only PIM and
PSM schema evolution.

• The existence of the PIM schema and interpretations of PSM schemas
against the PIM schema is beneficial when the designer performs creation
and update operations for building new PSM schemas or new parts of ex-
isting PSM schemas. Our technique ensures that the designer creates new
PSM components consistently with the PIM schema (from the conceptual
perspective). This ensures semantical coherence between the modeled fam-
ily of XML schemas. All XML schemas in the family, even those designed
by different developers, are consistent with the PIM schema. The designers
need not check this coherence manually which saves them a great deal of
work and prevents design errors.

• Sometimes the designer may want to optimize the structure of an XML

107

schema but avoid changes to the semantics of the XML schema. When the
designer works with the PSM schema, our mechanism is able to prevent
these changes. It can automatically check whether a change to the PSM
schema needs to be propagated to the PIM schema, or not. This also
saves the designer a lot of work, because (s)he does not need to check this
manually.

• Finally, when the designer needs to change the PIM schema, our mechanism
automatically propagates the changes to the PSM schemas and vice versa.
Again, this saves work and prevents errors, because the designer does not
need to propagate the changes manually.

Figure 8.10(a)-(d) shows the number of atomic operations performed by the
designer in our case study. In comparison to existing approaches to XML schema
evolution, our technique saves the designer a great deal of manual work. This
is because we consider the PSM schemas interpreted against a single common
PIM schema. As we have shown this saves work and prevents errors when the
designer needs to check the semantical consistency of his/her new or evolved part
of a PSM schema and when making changes to PIM schema or PSM schemas and
their propagation to the other schemas. The amount of work saved in comparison
to other approaches is demonstrated by Figure 8.10. The darker columns show
the amount of atomic operations performed manually by the designer. These
operations are assisted by our technique which ensures that the consistency be-
tween the created XML schemas is preserved. The designer does not need to
check consistency manually which saves a lot of time. This consistency check
is not provided by existing approaches, where the designer has to do the check
manually. The lighter columns show the amount of atomic operations performed
automatically by our propagation mechanism. Again, propagation is not support-
ed by existing approaches and these operations would have to be done manually
by the designer.

We can also see a fundamental problem in the current approaches, because
they do not consider synchronization operations or their equivalent. Without this
operation a correct propagation between PIM and PSM schemas is not possible.
As we have shown, this is necessary in various practical situations when a part
of a PIM or PSM schema is split into more detailed parts. It is also useful in
extending an existing part with new components, as well as in a reversed process
when more parts of a schema are merged together.

On the other hand, our approach is more laborious in the initial phases,
because the PIM schema and PSM schemas modeling the XML schemas must be
created. This is not the case of the other approaches which work directly with
an XML schema or its direct translations to a conceptual schema. Therefore,
the other approaches are more suitable in situations, where the designer works
only with a single XML schema. When a family of XML schemas needs to be
managed, our approach is more beneficial.

Finally, let us note that the approach presented deals only with PIM and PSM
schemas and propagation of changes between both levels. It does not solve the
problem of propagation of changes to the data, i.e. XML documents. As we have
shown, this has been solved by other approaches. We have also worked on this

108

problem in our previous work. In [71] we show how XML documents need to be
adapted when a PSM schema which models their XML schema evolves.

8.9 Conclusions
In this chapter we focused on two of the main challenges of model driven de-
velopment [43] – evolution and its formal specification. In particular, we were
interested in model driven XML schema evolution and concentrated on the PIM
and PSM levels of our previously proposed five-level evolution framework. We
defined PIM and PSM schemas for modeling XML schemas formally and extend-
ed them with atomic and composite operations for their modification. We then
identified minimal set of atomic operations, proved its correctness and specified
the respective mechanism for automatic propagation of changes between PIM
and PSM levels. The formal basis of the operations enables us to ensure that
the framework is designed correctly. Next we introduced implementation of the
framework and depicted the advantages of the system in a real-world use case.

Key Contributions If we compare the proposed system with the current ap-
proaches, we can identify several key contributions and innovations it brings:

• Global View of the Evolution Problem: As mentioned in Section 8.7, the ex-
isting approaches towards the evolution and change management of XML
schemas consider only a single XML schema. Our proposed technique con-
siders a family of XML schemas applied in a system.

• Formal Basis of the Proposal: Similar to the current work being done, we
exploit the idea of a platform-independent conceptual schema (PIM schema)
of the problem domain which allows for abstraction from technical details
of particular XML schemas. We also consider a platform-specific (PSM)
schema for each targeted XML schema. Each PSM schema is mapped to
the PIM schema and can be automatically translated to an expression in a
selected XML schema language such as XSD or RELAX NG. We defined
PIM and PSM schemas and mappings between them formally, which enables
us to effectively manage the evolution of XML schemas. When a change
to the PIM schema is made, we can precisely identify all the parts of XML
schemas affected by this modification and, conversely, when a change to the
PSM schema is made, we can identify whether the PIM schema is affected
and how, or not.

• Hierarchy of Operations: Naturally, the idea of change management is based
on a set of operations. As we have mentioned, they can be classified vari-
ously and current approaches utilize different sets. In our work we defined a
set of atomic operations and proved its minimality and correctness. Having
this concept, we could restrict ourselves to this set and define the respec-
tive change propagation precisely and correctly. Last but not least, we
showed that using the set of correctly defined atomic operations and the re-
spective change propagation we can define any composite and, hence, more
user-friendly operation. The respective change propagation is then defined

109

implicitly and its correctness is ensured as well. A system of operations
similar to this was identified in a recent survey [14] (Section 6), but has not
yet been researched properly.

• Experimental Implementation of the Proposal: The final contribution of this
chapter is not only the proposal itself, but also its experimental and open-
source implementation eXolutio. Even though it currently does not cover
all the proposed aspects (it is still under intense development), a user may
test the key features for his/hers real-world examples. For instance, recently
it has been tested in real-world use-cases by the Fraunhofer Institut8.

8http://www.isst.fraunhofer.de/dasinstitut/

110

9. Inheritance in Conceptual
Modeling for XML
In this chapter we extend the conceptual model for XML from Chapter 6 with
modeling of inheritance relations that we previously omitted for simplicity. This
is the first part of our core and most important contribution to XML schema
evolution.

The contents of this chapter was published as a conference paper On Inheri-
tance in Conceptual Modeling for XML1 [63] in the 3rd International Conference
on Ambient Systems, Networks and Technologies (ANT 2012).

9.1 Introduction
Motivation In general, we can distinguish two types of inheritance. The first
one is a so called structural inheritance. This means that we only want to reuse
a part of a schema for two different concepts. For example, we can have an
address containing street_name and country attributes. We want to use these
two attributes among others within a description of a customer and within a
description of a letter. The concept of a customer is in no conceptual relation-
ship to the concept of a letter, except they both have an address. This is similar
to the concept of interfaces in modern programming languages like Java or C#.
The second type of inheritance is a so called conceptual inheritance. With this
type of inheritance, the child also inherits all the characteristics of the parent,
but also they are in a conceptual relationship. For demonstration, let us use a
classical example from biology. As a parent, we have the concept of a mammal.
As its children, we can have a cat and a human. In this type of inheritance, being
an instance of the child (a cat) also implies being an instance of the parent (a
mammal). This is in contrast with the structural inheritance, where being a child
(a country or a customer) does not imply being a parent (an address). Typically,
in conceptual modeling languages like UML, we find support for the conceptual
inheritance (generalizations) and in data modeling languages like XML Schema
we find the structural inheritance (type extensions). Because our model’s goal is
to bridge the gap, we support both types of inheritance in an intuitive manner.
The reason for bridging the gap is that we use our model as a part of a larg-
er framework for data and schema evolution [71] incorporating more than just
XML as a target platform. Because of this we chose UML class diagrams as a
platform-independent modeling language. However, on the platform-specific lev-
el, we need do be able to model whatever the target language offers. In XML, the
XML Schema language offers type extension (structural inheritance) in contrast
to the conceptual inheritance present in UML class diagrams. Therefore, we need
to support both types in out conceptual model.

Outline The rest of the chapter is organized as follows. In Section 9.2, we
summarize our conceptual model for XML and we extend it with the constructs

1http://dx.doi.org/10.1016/j.procs.2012.06.011

111

http://dx.doi.org/10.1016/j.procs.2012.06.011

0..* makes

0..*

0..*

1..*

1..*

Supply

amount

supply-price

date

name

email {1..*}

Supplier

Product

title

price

code

Item

tester

item-price

amount

Customer

name

email {1..*}

phone {0..*}

Purchase

code

create-date

status

Address

street

city

LocalAddress

has

GlobalAddress

country

ShippingAddress

gps

Items

Item

ProductBase

Product
|

Purchase

@version

Customer

name

Contact

email {1..*}

phone {0..*}

ItemTester

@tester

ItemPricing

price

amount

cust items

item

PurRQSchema

purchaseRQ

1..*

Address

street

city

addr

ShippingAddress

country

gps

LocalAddress

<purchaseRQ version="1.1.4.">

 <cust>

 <name>Jakub Klímek</name>

 <email>klimek@ksi.mff.cuni.cz</email>

 <addr>

 <street>Malostranské náměstí 25</street>

 <city>Prague</city>

 <country>Czech Republic</country>

 <gps>50.088385,14.403629</gps>

 </addr>

 </cust>

 <items>

 <item tester="no">

 <code>IT1234</code>

 <title>Sample 4</title>

 <price>20€</price>

 <amount>4</amount>

 </item>

 </items>

</purchaseRQ>

(a) (b) (c)

Figure 9.1: Sample PIM and PSM schema and an XML document modeld by the
PSM schem

for modeling of inheritance. Section 9.3 contains examples of translation from our
conceptual model to the XML Schema language. Section 9.4 surveys related work.
Finally, Section 9.5 contains a brief description of our evaluation and concludes.

9.2 Conceptual Model with Inheritance
In this section, we will simplify our conceptual model for XML and focus on its
inheritance extension. We follow the Model-Driven Architecture (MDA) princi-
ple which is based on modeling data at several levels of abstraction. The most
abstract level contains a conceptual schema of the problem domain. The lan-
guage applied to express the conceptual schema is called platform-independent
model (PIM). The level below is the platform-specific level which specifies how
the whole or a part of the PIM schema is represented in a particular platform.
In our case, the platform is XML.

9.2.1 Platform-Independent Model
A PIM schema is based on UML class diagrams and models real-world concepts
and relationships between them. It contains three types of components: classes,
attributes and associations. A sample PIM schema is in Figure 9.1(a).

Definition 9.1 A PIM schema is a triple S = (Sc,Sa,Sr) of disjoint sets of
classes, attributes, and associations, respectively.

• Class C ∈ Sc has a name assigned by function name. For inheritance
purposes, function isa assigns a parent class to a child class and the relation
must not form a cycle. Furthermore, functions abstract and final determine
whether the class can have instances in data and whether this class can be
inherited from, respectively.

• Attribute A ∈ Sa has a name, data type and cardinality assigned by func-
tions name, type, and card, respectively. Moreover, A is associated with a
class from Sc by function class.

• Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are called
association ends of R. R has a name assigned by function name. Both E1
and E2 have a cardinality assigned by function card and are associated with

112

a class from Sc by function participant. We will call participant(E1) and
participant(E2) participants of R. name(R) may be undefined, denoted by
name(R) = λ.

For a class C ∈ Sc, we will use attributes (C) to denote the set of all attributes
of C, i.e. attributes (C) = {A ∈ Sa : class(A) = C}. Similarly, associations (C)
will denote the set of all associations with C as a participant, i.e. associations (C)
= {R ∈ Sr : (∃E ∈ R)(participant(E) = C)}.

9.2.2 Platform–Specific Model
The platform-specific model (PSM) enables to specify how a part of the reality
is represented in a particular XML schema in a UML-style way. We introduce
it formally in Definition 9.2. We view a PSM schema in two perspectives. From
the grammatical perspective, it models XML elements and attributes. From the
conceptual perspective, it delimits the represented part of the reality. Its advantage
is clear – the designer works in a UML-style way which is more comfortable then
editing the XML schema. A sample PSM schema is in Figure 9.1(b) and a
corresponding valid XML document is in Figure 9.1(c).

Definition 9.2 A PSM schema is a tuple S ′ = (S ′c,S ′a,S ′r,S ′m, C ′S′) of disjoint
sets of classes, attributes, associations, and content models, respectively, and
one specific class C ′S′ ∈ S ′c called schema class.

• Class C ′ ∈ S ′c has a name assigned by function name.

• Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form as-
signed by functions name, type, card and xform, respectively. xform(A′)
∈ {e, a}. Moreover, it is associated with a class from S ′c by function class
and has a position assigned by function position within the all attributes
associated with class(A′).

• Association R′ ∈ S ′r is a pair R′ = (E ′1, E ′2), where E ′1 and E ′2 are called as-
sociation ends of R′. Both E ′1 and E ′2 have a cardinality assigned by function
card and each is associated with a class from S ′c or content model from S ′m
assigned by function participant, respectively. We will call participant(E ′1)
and participant(E ′2) parent and child and will denote them by parent(R′)
and child(R′), respectively. Moreover, R′ has a name assigned by function
name and has a position assigned by function position within the all asso-
ciations with the same parent(R′). name(R′) may be undefined, denoted by
name(R′) = λ.

• Content model M ′ ∈ S ′m has a content model type assigned by function
cmtype. cmtype(M ′) ∈ {sequence, choice, set}.

The graph (S ′c ∪ S ′m,S ′r) must be a forest2 of rooted trees with one of its trees
rooted in C ′S′. For C ′ ∈ S ′c, attributes (C ′) will denote the sequence of all at-
tributes of C ′ ordered by position, i.e. attributes (C ′) = (A′i ∈ S ′a : class(A′i) =

2Note that since S ′ is a forest, we could model R′ directly as a pair of connected components.
However, we use association ends to unify the formalism of PSM with the formalism of PIM.

113

C ′ ∧ i = position(A′i)). Similarly, content (C ′) will denote the sequence of all
associations with C ′ as a parent ordered by position, i.e. content (C ′) = (R′i ∈
S ′r : parent(R′i) = C ′∧ i = position(R′i)). We will call content (C ′) content of C ′.

A sample PSM schema is depicted in Figure 9.1(b). As can be seen from the
definition, PSM introduces similar constructs to PIM: classes, attributes and as-
sociations. The PSM-specific constructs have precisely defined semantics. Briefly,
a class models a complex content. The complex content is specified by the at-
tributes of the class and associations in its content (their ordering is given by
functions attributes and content). An attribute models an XML element declara-
tion with a simple content or XML attribute declaration depending on its XML
form (function xform). An association models an XML element declaration with
a complex content if it has a name. Otherwise, it models only that the complex
content modeled by its child is nested in the complex content modeled by its
parent.

Sometimes, classes in one or more PSM schemas may share the same attributes
and/or part of their content. Instead of repeating them at several places, we can
use inheritance. We need to be able to specify that a class can reuse an already
modeled part of a PSM schema. We distinguish two types of inheritance, the
structural and the conceptual.

Address

C_Address
Address

L_Address

Customer

name

Letter

pages

Address

street

city

country

(a) Structural inheritance

Address

C_Address

Customer

name

address

GlobalAddress

country

ShippingAddress

gps

Address

street

city

(b) Conceptual inheritance

Figure 9.2: Two inheritance types in PSM schemas

Structural inheritance For structural inheritance, we introduce a structural
representative (repr) function. This function specifies that a PSM class C ′ has a
reference to another PSM class C ′r. It means that the complex content modeled by
C ′ contains all the attributes and content of C ′ and all the attributes and content
of C ′r. However, because this is structural inheritance, C ′ can not be used where
C ′r is used. In our visualization we write the name of the referenced class on top
of the name of the referencing class. An example can be seen in Figure 9.2(a).
The example is from our motivation. In the PSM schema we model a Customer
and a Letter. Both of them use attributes of Address.
Conceptual inheritance Because of the nature of the structural inheritance
which does not allow the usage of a child where its parent is used, we need an-
other construct for expressing the conceptual inheritance in a PSM schema. For
that, we introduce an isa function. This function specifies that a PSM class C ′ is
an conceptual inheritance child of another PSM class C ′p. This also means that
the complex content modeled by C ′ contains all the attributes and content of C ′
and all the attributes and content of its parent, C ′p, but in addition, it means
that wherever the content modeled by C ′p is used, the content modeled by C ′ can
also be used. In our visualization we use the usual inheritance arrow known from
UML. An example can be seen in Figure 9.2(b). In this example, we model a

114

Address

street

city

GlobalAddress ShippingAddress

country gps

Customer

number

has

(a) PIM schema for interpre-
tation with inheritance ex-
amples

ShippingAddress

Customer

number

street

city

gps

shipping

(b) Implicit use of con-
ceptual inheritance in
PSM schema

Address

C_Address

Customer

name

address

GlobalAddress

country

ShippingAddress

gps

Address

street

city

(c) Explicit use of conceptual inheritance in
PSM schema

Figure 9.3: PSM schemas for interpretation with inheritance examples

Customer who has an Address, but we do not mind which particular address it is.
Because there is conceptual inheritance between Address and BillingAddress
and between Address and ShippingAddress, the actual address used in the con-
tent of Customer (here we again use the structural inheritance) can be any one
of them. Formally:

Definition 9.3 Let C ′, D′ ∈ S ′c, let repr∗(λ) = {} and repr∗(C ′) = {repr(C ′)} ∪
repr∗(repr(C ′)) where C ′ 6= λ. It must hold that C ′ /∈ repr∗(C ′). Let isa∗(λ) = {}
and isa∗(C ′) = {isa(C ′)} ∪ isa∗(isa(C ′)) where C ′ 6= λ. It must hold that C ′ /∈
isa∗(C ′). In addition, repr and isa must not form a cycle when combined (e.g. isa
(C ′) = D′ ⇒ repr(D’) 6= C ′ in the simplest case). Formally, let isarepr∗(λ) = {}
and isarepr∗(C ′) = {isa(C ′)} ∪ isa∗(isa(C ′)) ∪ {repr(C ′)} ∪ repr∗(repr(C ′)) where
C ′ 6= λ. It must hold that C ′ /∈ isarepr∗(C ′).

9.2.3 Interpretation of PSM schema against PIM schema
A PSM schema represents a part of a PIM schema. A class, attribute or asso-
ciation in the PSM schema may be mapped to a class, attribute or association
in the PIM schema. In other words, there is a mapping which specifies the se-
mantics of classes, attributes and associations of the PSM schema in terms of the
PIM schema. The mapping must meet certain conditions to ensure consistency
between PIM schemas and the specified semantics of the PSM schema. The inter-
pretation of a PSM schema against a PIM schema is what we call the mapping.
It is the core feature of our conceptual model. It interconnects constructs on the
platform-specific level with those on the platform-independent level and allows
for interesting use cases for the conceptual model like XML schema evolution and
integration [58, 89, 61]. An arbitrary interpretation of a PSM component would,
however, lead to inconsistencies between the semantics of the PIM schema and
the semantics of the PSM schema given by the interpretation. An example of

115

such inconsistency can be a class C ′ such that I(C ′) = C and its attribute A′
such that I(A′) = A in the PSM schema, while in the PIM schema the attribute
A would belong to a class other than C. Before we introduce the rules that
prevent those inconsistencies, let us define the notion of interpreted context of
a PSM component which we need for the rules. The PSM schema can contain
some uninterpreted classes, attributes and associations. This means that those
have no meaning on the platform-independent level, but they are used in the
XML format. Definition 9.4 says that if a PSM component is a class and has an
interpretation, then it is its own interpreted context. The other components exist
in a semantic context of the nearest ancestor class which has an interpretation
(semantic equivalent on the PIM level) and that class is their interpreted context.

In the next definition, we will use −→Sr to denote the set of all PIM associations
with their direction specified (normally, they do not have direction).

Definition 9.4 An interpretation of a PSM schema S ′ against a PIM schema S
is a partial function I : (S ′c∪S ′a∪S ′r)→ (Sc∪Sa∪

−→
Sr) which maps a class, attribute

or association from S ′ to a class, attribute or directed image of an association
from S, respectively. Let X ′ be a component of a PSM schema S ′. We call I(X ′)
interpretation of X ′. Let I be an interpretation of S ′ against a PIM schema S.
The interpreted context of X ′ with respect to I is denoted intcontext(X ′) and

• intcontext(X ′) = X ′ when X ′ ∈ S ′c and I(X ′) 6= λ

• intcontext(X ′) = C ′ when X ′ 6∈ S ′c or I(X ′) = λ, where C ′ is the closest
ancestor class to X ′ s.t. I(C ′) 6= λ.

Note that intcontext(X ′) may be empty, i.e. intcontext(X ′) = λ. In that case
we will say that X ′ does not have an interpreted context. This can happen when
no class in a particular tree of the PSM schema forest has an interpretation.

Definition 9.5 Let I be an interpretation a PSM schema S ′ against a PIM
schema S. Let C1 � C2 be a shortcut for C1 = C2 or C1 is an ancestor of
C2 regarding inheritance in a PIM schema. We say that I is consistent if the
following rules are satisfied:

(∀A′ ∈ S ′a s.t. I(A′) 6= λ) (9.1)
(intcontext(A′) 6= λ ∧ class(I(A′)) � I(intcontext(A′)))

(∀R′ ∈ S ′r s.t. I(child(R′)) 6= λ ∧ intcontext(R′) 6= λ) (9.2)
(I(R′) = (E1, E2) s.t. participant(E1) � I(intcontext(R′))
∧ participant(E2) � I(child(R′)))

(∀R′ ∈ S ′r s.t. I(child(R′)) = λ ∨ I(intcontext(R′)) = λ) (9.3)
(I(R′) = λ)

(∀C ′ ∈ S ′c s.t. repr(C ′) 6= λ ∧ I(C ′) 6= λ)(I(C ′) � I(repr(C ′))) (9.4)
(∀C ′ ∈ S ′c s.t. isa(C ′) 6= λ)(I(isa(C ′)) � I(C ′)) (9.5)
(∀C ′ ∈ S ′c s.t. abstract(C ′) = true)(abstract(I(C ′)) = true) (9.6)
(∀C ′ ∈ S ′c s.t. final(C ′) = true)(final(I(C ′)) = true) (9.7)

116

The first rule says that the interpretation (a PIM class) of an interpreted
context (which is a PSM class) of each attribute A′ that has an interpretation
is the same as the attributes interpretations (a PIM attribute) class (a PIM
class). The second rule is similar, but for associations. The third rule says
that if an association does not have an interpreted context or its child is not
interpreted, it is not interpreted either. Rule 9.4 states that two classes involved
in a structural inheritance relationship must have the same interpretation (as
they share the same content). Besides that, we need to take into account the
possibility that the class from which we inherit content and attributes may have
conceptual inheritance children that may replace it. Finally, Rule 9.5 states that
if two classes are in an conceptual inheritance relationship in the PSM schema,
their interpretations must be the same or the parent’s interpretation must be an
ancestor of the child’s interpretation in the PIM schema. This is what we call an
explicit inheritance, as we see the inheritance function in the PSM schema.

9.2.4 Conceptual model summary
In summary, the usefulness of our conceptual model for XML can be clearly seen
when we, for example, ask questions like "In which of our hundred XML schemas
used in our system is the concept of a customer represented?" and "What impact
on my XML schemas would this particular change on the conceptual level have?".
Even better, with our extensions for evolution of XML schemas [58, 89] we can
make changes to the PIM schema (e.g. change the representation of a customer’s
name from one string to firstname and lastname) and those changes can be
automatically propagated to all the affected PSM schemas. Thanks to automated
translations from PSM schemas to, for example, XML Schema and back [96], we
can easily manage a whole system of XML schemas from the conceptual level all
thanks to the interpretations. These extensions, however, are not trivial and are
not in the scope of this chapter, where we only deal with modeling of inheritance.
In addition, the conceptual model can serve as a quality documentation of the
XML schemas, because it is clear to which concepts individual schema parts
relate. Also, it would be possible to generate a clickable HTML documentation
of a system modeled in eXolutio. With the model, it is also much easier and
faster to grasp a system of multiple XML schemas when, for example, negotiating
interfaces between two information systems.

9.3 Translation of inheritance to XML Schema
In this section, we will very briefly sketch how the new inheritance constructs
can be translated to XML Schema language using a few examples. This is, of
course, very much dependent on the chosen style of writing an XML schema. In
our future work, we will focus on enhancing our PSM schema with user-defined
markers which will help us to automatically determine the desired XML schema
style. We also show some limitations when using the XML Schema language.
There are several scenarios. As a first example, we use the structural inheritance
as in Figure 9.2(a), class C_Address to reference the Address class. In this case,
Address would be translated to the attributeGroup construct. This is because
it is a root of the PSM schema and it has no named association leading to it,

117

so it does not model an element. The attributeGroup would then be referenced
from the complexType modeled by Customer. In our second example, we use the
conceptual inheritance as in Figure 9.3(c). In this case, the child complexTypes
GlobalAddress and ShippingAddress will use the extension construct to extend
the Address complexType. Now the element modeled by the named association
address will have the Address type, which makes it possible to substitute it with
GlobalAddress or ShippingAddress types. The problem with XML Schema
language and inheritance is that for our situation to work, we must explicitly
mention the used datatype directly in the data using the XML Schema Instance
construct xsi:type, which is very inconvenient because we would like to keep the
data unchanged. The solution could be for example to use another XML schema
language like Relax NG. Note that the abstract and final constructs have their
respective counterparts in the XML Schema language and their translation is
straightforward.

9.4 Related work
There exist various XML schema languages, e.g. DTD, XSD or Relax NG for
specification of XML schemas. However, these languages are not very user-
friendly and each of them has a different level of expressiveness. In particu-
lar, support for inheritance is only present in XML Schema. Therefore, various
approaches for designing XML schemas at more abstract, conceptual level were
introduced. In comparison to our introduced approach, none of the approaches
considers a formal binding between XML schemas and conceptual schemas like
our interpretation. They only show how a conceptual schema is translated to an
XML schema or vice versa but they do not consider the case when more XML
schemas need to be designed which is the motivation for our conceptual model.
For the same reason the approaches have limited capabilities when it comes to
modeling conceptual and structural inheritance. In majority of cases the authors
do not consider inheritance at all or they do it only superficially. The top-down
approaches are based on designing first a conceptual schema and then its transla-
tion to one or more XML schemas. There are approaches based on the ER model
(see our survey [85] or a more recent survey [137]) and then there are approaches
based on the model of UML class diagrams (see surveys [18, 38]). The bottom-up
approaches consider existing XML schemas and use them to derive a conceptual
schema. Again there are approaches considering the ER model [112] or UML
class diagrams [136]. There is also a recent survey of them in [137].

The common characteristic is that the approaches force a designer to mod-
el an XML schema directly in (or import it to) the ER/UML diagram. This
can be a disadvantage because the designer must concentrate on XML specific
implementation details at the conceptual level. Another problem is that these
approaches consider design of only a single separate XML schema but not a set
of XML schemas that describe XML representations of the same data in different
types of XML documents.

The approaches briefly considering inheritance are [119, 37] but only in [3] the
authors go into more detail and also show some limitations of the XML Schema
language. However, they still model XML schema structure and semantics in one
schema, which is not good enough as we showed in [96].

118

9.5 Evaluation and Conclusion
We implemented the inheritance extension in our tool eXolutio [55] and evaluated
it as we modeled a medium-sized family of XML schemas of the Data Standard
for eHealth in the Czech Republic (DASTA)3. We only summarize our results
here. The PIM schema contained more that 70 classes, 100 associations including
conceptual inheritance relations and hundreds of attributes. Mapped to the PIM
schema were 12 XML formats (PSM schemas). Our approach improved the speed
with wich programmers were able to orientate themselves in the schemas and it
also helped in revealing inconsistencies in the XML schemas.

In this chapter, we summarized our previous work on a conceptual model for
XML and we introduced an inheritance extension to it. We showed how inheri-
tance can be modeled on a platform-independent and platform-specific levels and
we show how the constructs can be translated to the XML Schema language. We
surveyed work related to conceptual modeling of XML in general.

3http://ciselniky.dasta.mzcr.cz/ (in Czech only)

119

http://ciselniky.dasta.mzcr.cz/

120

10. Formal Evolution of XML
Schemas with Inheritance
In Chapter 9, we formally extended our conceptual model for XML with inher-
itance modeling, which we omitted before for simplicity. In this chapter, we
extend our approach with evolving schemas with inheritance on both PIM and
PSM levels and we bridge the gap between the conceptual modeling world (con-
ceptual inheritance) and the schema design world (structural inheritance). This
is the second part of our core and most important contribution to XML schema
evolution.

The content of this chapter was published as a conference paper Formal Evo-
lution of XML Schemas with Inheritance1 [62] in 2012 IEEE International Con-
ference on Web Services (ICWS 2012).

10.1 Introduction
Motivation Let us shortly discuss the two main inheritance types. The struc-
tural inheritance means that we want to reuse a part of a schema for different
concepts. For example, we can have an address containing street_name and
country attributes. We want to use these among others within a description of
a customer and within a description of a letter. A customer is in no conceptu-
al relationship to a letter, except they both have an address. With conceptual
inheritance, the child inherits all characteristics of the parent too, but there is
also a conceptual relationship. An example from biology: As a parent, we have
a mammal and as its children we can have a cat and a human. In this type of
inheritance, being an instance of the child also implies being an instance of the
parent. This is in contrast with the structural inheritance, where being a child
does not imply being a parent. In conceptual modeling languages like UML we
find support for the conceptual inheritance and in data modeling languages like
XML Schema we find the structural inheritance. Because our model’s goal is to
bridge the gap, we support both types of inheritance in an intuitive manner. The
reason for bridging the gap is that we use our model as a part of a larger frame-
work [71] incorporating more than just XML as a target platform and we chose
UML class diagrams as a universal platform-independent modeling language. On
the platform-specific level, we need do be able to model whatever the target lan-
guage offers and in XML and the XML Schema language it is type extension
(structural inheritance) in contrast to the conceptual inheritance present in UML
class diagrams. For the model to be usable, it needs well defined operations that
assure the model consistency during its evolution in time.

Outline In Section 10.2 we complement the model with a set o operations
for inheritance management and in Section 10.3 we describe their propagation.
Section 10.4 describes our implementation of the approach. Section 10.5 contains

1http://dx.doi.org/10.1109/ICWS.2012.11

121

http://dx.doi.org/10.1109/ICWS.2012.11

evaluation. Section 10.6 contains a brief survey of related work. Section 10.7
concludes.

10.2 Atomic Operations
In this section, we extend atomic operations for editing PIM and PSM schemas
which we introduced in our previous work [89] with inheritance evolution, which
is the main contribution of this paper. The atomic operations serve as a for-
mal basis for describing user-friendly operations composed of them. Formally,
we suppose a PIM schema S and a set of PSM schemas PSM = {S ′1, . . . , S ′n},
where each S ′i has an interpretation Ii against S. We also consider one specific
PSM schema S ′ from this set with an interpretation I against S. For each atomic
operation we specify input parameters together with a precondition and post-
condition. If a precondition is not satisfied, the operation cannot be performed.
The postcondition describes the effect of the operation. When an operation is
executed on S or S ′, we say that the schema evolved to a new version. This is
denoted S+ or S ′+, respectively. The new version of the interpretation will be
denoted I+. In [89] we classified atomic operations into 4 categories: creation of
classes, attributes and associations (denoted by the Greek letter α), their update
(denoted by the Greek letter υ) and removal (denoted by the Greek letter δ) and
we introduced a special synchronization operation (denoted by the Greek letter
σ). For their detailed description we refer the reader to our previous work [89].
In this paper we extend them with operations for inheritance management.

10.2.1 Atomic Operations for PIM Schema Inheritance
Evolution

In [89] we introduced basic operations for creation, change, movement and dele-
tion of classes, attributes and associations. Now we extend these operations with
new ones required for proper modeling and evolution of inheritance. The formal
commands for the operations and their preconditions and postconditions formal-
ized according to our model are in Table 10.1. Note that so far, we do not describe
propagation from the PIM level to the PSM level.

There is basically one atomic operation which changes the isa function on
PIM classes υisa

c (Cs, Cg). However, there are four distinct cases of its use, so we
describe each case individually, as it makes the description easier to formalize and
understand. First, we have the simple addition and removal of generalizations.
Formally, this means setting the isa function to a class when it was λ (addition)
and setting it to λ when it was set to some class (removal). Next is resetting
generalizations – setting it to a different class than it was originally set to. The
preconditions state that these operations can be done only if there is a general-
ization between the source and the target general class. This means moving the
specific class higher or lower in the inheritance hierarchy.

In addition, there are operations which change the abstract and final functions
and that is all we need for the management of the inheritance on the PIM level.
These operations are trivial so we do not provide examples for them.

Then there are special operations for movement of attributes and association
ends between classes which are in an inheritance relation. These are different from

122

Notation Description Precondition Postcondition
υisa
c (Cs, Cg) Sets conceptual inheri-

tance relation. Cg is the
general class and Cs is the
specialized class

Cg, Cs ∈ Sc ∧ Cg 6= Cs ∧
final(Cg) = false ∧ Cs /∈
isa∗(Cg) ∧ isa(Cs) = λ ∧
Cg 6= λ

isa+(Cs) = Cg

υisa
c (Cs, λ) Unsets conceptual inheri-

tance relation.
Cs ∈ Sc ∧ isa(Cs) 6= λ isa+(Cs) = λ

υisa
c (Cs, Cg) Resets conceptual inheri-

tance relation to a more
general class. Cg is the
more general class, Cg0 is
the original general class
and Cs is the specialized
class

Cg, Cg0, Cs ∈ Sc ∧ Cg 6=
Cs ∧ final(Cg) = false ∧
Cs /∈ isa∗(Cg) ∧ isa(Cs) =
Cg0 6= λ ∧ Cg 6= λ ∧
isa(Cg0) = Cg

isa+(Cs) = Cg

υisa
c (Cs, Cg) Resets conceptual inheri-

tance relation to a less gen-
eral class. Cg is the less
general class, Cg0 is the
original general class and
Cs is the specialized class

Cg, Cg0, Cs ∈ Sc ∧ Cg 6=
Cs ∧ final(Cg) = false ∧
Cs /∈ isa∗(Cg) ∧ isa(Cs) =
Cg0 6= λ ∧ Cg 6= λ ∧
isa(Cg) = Cg0

isa+(Cs) = Cg

υabstract
c (C, b) Sets the abstract property

of a class C to b, which is
either true or false

abstract+(C) = b

υfinal
c (C, b) Sets the final property of a

class C to b, which is either
true or false

(b = true ∧ @D ∈
Sc(isa(D) = C)) ∨ b =
false

final+(C) = b

υgen
a (A,Cg) Move attribute to a general

class Cg
A ∈ Sa ∧ C0, Cg ∈ Sc ∧
class(A) = C0 ∧ isa(C0) =
Cg

class+(A) = Cg

υspec
a (A,Cs) Move attribute to a specific

class Cs
A ∈ Sa ∧ C0, Cs ∈ Sc ∧
class(A) = C0 ∧ isa(Cs) =
C0

class+(A) = Cs

υgen
r (E,Cg) Reconnect association end

to a general class Cg
C0, Cg ∈ Sc ∧
participant(E) =
C0 ∧ isa(C0) = Cg

participant+(E) =
Cg

υspec
r (E,Cs) Reconnect association end

to a specific class Cs
C0, Cs ∈ Sc ∧
participant(E) =
C0 ∧ isa(Cs) = C0

participant+(E) =
Cs

Table 10.1: Atomic operations for PIM inheritance management

the operations for simple attribute or association end movement, their semantics
and therefore their propagation is different.

10.2.2 Atomic Operations for PSM Schema Inheritance
Evolution

In this section we present operations for conceptual inheritance in PSM schemas.
The operations are similar to those on the PIM level but there are differences
in preconditions as on the PSM level we need do coordinate conceptual and
structural inheritance. In Table 10.2 we summarize notation, description, pre-
conditions and postconditions of operations working with the isa, abstract and
final functions and operations for moving attributes and associations through the
inheritance hierarchy.

123

Notation Description Precondition Postcond.
υ′isa
c (C ′s, C ′g) Sets conceptual inheritance re-

lation. C ′g is the general class
and C ′s is the specialized class

C ′g, C
′
s ∈ S ′c \ {C′S′} ∧

C′} 6= C′∫ ∧ C′∫ /∈
isarepr∗(C′})∧ isa(C′∫) =
λ ∧ C′} 6= λ

isa+(C ′s) =
C ′g

υ′isa
c (C ′s, λ) Unsets conceptual inheritance

relation.
C ′s ∈ S ′c \ {C′S′} ∧
isa(C′∫) 6= λ

isa+(C ′s) = λ

υ′isa
c (C ′s, C ′g) Resets conceptual inheritance

relation to a more general class.
C ′g is the more general class,
C ′g0 is the original general class
and C ′s is the specialized class

C ′g, C
′
g0, C

′
s ∈ S ′c \

{C′S′} ∧ C′} 6= C′∫ ∧ C′∫ /∈
isarepr∗(C′})∧ isa(C′∫) =
C′}′ 6= λ ∧ C′} 6= λ ∧
isa(C′}′) = C′}

isa+(C ′s) =
C ′g

υ′isa
c (C ′s, C ′g) Resets conceptual inheritance

relation to a less general class.
C ′g is the less general class, C ′g0
is the original general class and
C ′s is the specialized class

C ′g, C
′
g0, C

′
s ∈ S ′c \

{C′S′} ∧ C′} 6= C′∫ ∧ C′∫ /∈
isarepr∗(C′})∧ isa(C′∫) =
C′}′ 6= λ ∧ C′} 6= λ ∧
isa(C′}) = C′}′

isa+(C ′s) =
C ′g

υ′abstract
c (C ′, b) Sets the abstract property of a

class C ′ to b, which is either
true or false

abstract+(C ′) =
b

υ′final
c (C ′, b) Sets the final property of a class

C ′ to b, which is either true or
false

(b = true ∧ @D′ ∈
S ′c(isa(D′) = C ′))∨ b =
false

final+(C ′) = b

υ′gen
a (A′, C ′g) Move attribute to a general

class C ′g
A′ ∈ S ′a ∧ C ′0, C

′
g ∈

S ′c ∧ class(A′) = C ′0 ∧
isa(C ′0) = C ′g

class+(A′) =
C ′g

υ′spec
a (A′, C ′s) Move attribute to a specific

class C ′s
A′ ∈ S ′a ∧ C ′0, C

′
s ∈

S ′c ∧ class(A′) = C ′0 ∧
isa(C ′s) = C ′0

class+(A′) =
C ′s

υ′gen
r (R′, C ′g) Reconnect parent association

end of association R′ to a gen-
eral class C ′g

C ′0, C
′
g ∈ S ′c ∧

parent(R′) =
C ′0 ∧ isa(C ′0) = C ′g

parent+(R′) =
C ′g

υ′spec
r (R′, C ′s) Reconnect parent association

end of association R′ to a spe-
cific class C ′s

C ′0, C
′
s ∈ S ′c ∧

parent(R′) =
C ′0 ∧ isa(C ′s) = C ′0

parent+(R′) =
C ′s

Table 10.2: Atomic operations for PSM inheritance management

We also need to update some operations from [89] to take into account new re-
quirements imposed by our conceptual inheritance extension to the interpretation
definition. The redefined operations are in Table 10.3. For example, we redefine
the operation for setting a class as a structural representative so it respects the
rules of Definition 9.3. Next, we need to assure that when we delete a PSM class,
it is not part of any conceptual inheritance relation. The same goes for setting
a PSM classes interpretation. When we do that, we do not want that class to
be a part of a conceptual inheritance relation. Finally, we need to allow the
implicit inheritance when setting interpretation of attributes and associations.
The most complicated redefinition is υ′int

c (C ′, C) where we make sure that when
we update and interpretation of a class, there are no attributes nor associations
whose interpretation relies on the one of C ′ and that C ′ does not participate in
any inheritance relations. In the precondition, anc is an ancestor in the PSM
tree.

124

Notation Description Precondition Postcond.
υ′

repr
c (C ′, C ′r) Set class C ′ as

structural represen-
tative of C ′r

C ′ ∈ S ′c \ {C′S′} ∧ (C′∇ = λ∨ (C ′r ∈
S ′c \ {C′S′} ∧ I(C′) = I(C′∇) ∧ C′ /∈
isarepr∗(C′∇)))

repr+(C ′) =
C ′r

δ′c(C ′) Remove class C ′ C ′ ∈ S ′c ∧ attributes(C ′) =
content (C ′) = ∅ ∧ (@C ′0 ∈
S ′c)(repr(C ′0) = C ′) ∧ (@C ′1 ∈
S ′c)(isa(C ′1) = C ′)

C ′ 6∈ S ′+

υ′
int
c (C ′, C) Update interpreta-

tion of class C ′ to
class C

C ′ ∈ S ′c \ {C′S′}∧ (C = λ ∨ C ∈ Sc)
∧ (∀A′ ∈ S ′a s.t. intcontext(A′) =
intcontext(C ′) ∧ C ′ ∈ anc(A′))
(I(A′) = λ) ∧ (∀R′ ∈ S ′r s.t.
(intcontext(R′) = intcontext(C ′)∧C ′ ∈
anc(R′)) ∨ child(R′) = C ′)

(I(R′) = λ) ∧ (@C ′0 ∈ S ′c)(repr(C ′0) =
C ′) ∧ repr(C ′) = λ ∧ (@C ′1 ∈
S ′c)(isa(C ′1) = C ′) ∧ isa(C ′) = λ

I+(C ′) = C

υ′
int
a (A′, A) Update interpreta-

tion of attribute A′
to attribute A

A′ ∈ S ′a∧(A = λ∨(A ∈ Sa∧class(A) �
I(intcontext(A′))))

I+(A′) = A

υ′
int
r (R′, O) Update interpreta-

tion of
association R′ to
ordered image O of
association R

R′ ∈ S ′r ∧ child(R′) ∈ S ′c ∧ (O =
λ ∨ (O = (E1, E2) ∧ participant(E1) �
I(intcontext(R′)) ∧ participant(E2) �
I(child(R′))))

I+(R′) = O

Table 10.3: Basic atomic operations with inheritance update

10.3 Propagation of Atomic Operations

An interpretation of a PSM schema S ′ against a PIM schema S must be consis-
tent. When S or S ′ is modified by an atomic operation, one or more conditions
necessary for consistency may be violated and, consequently, the interpretation
or the other schema must be adapted accordingly. We call the process which
ensures the adaptation propagation of the atomic operation. The propagation of
the basic atomic operations was described in detail in our previous work [89] and
therefore in this paper we focus on the new operations for inheritance evolution.
We only allow changing the inheritance hierarchies on the PIM level as we view
the conceptual inheritance as belonging to the PIM level. We therefore restrict
the operations on the PSM level to the boundaries set by the PIM schema.

Here we describe how the introduced atomic operations executed on the PIM
schema S are propagated to each PSM schema S ′ ∈ PSM and its interpretation
I against S. Creation of a generalization (isa(Cs) = λ ∧ υisa

c (Cs, Cg 6= λ)) is not
propagated at all. When the generalization is set, it is new and therefore it does
not have an equivalent on the PSM level yet. Then there is setting of the abstract
function saying that a class cannot have instances in data (υabstract

c (C, b)). This
is a constraint that we can not check on the modeling level and therefore we
propagate it straight to the PSM schemas. We set the abstract function to the
same value for each PSM class C ′ that has C as an interpretation. Formally,
(∀C ′ : I(C ′) = C)(abstract(C ′) = b). From the PSM schemas this constraint is
propagated to the actual PSM schema languages and it is up to their validators to
check this constraint. Setting the final function is propagated in the same way as

125

the setting of the abstract function. The propagation of resetting a generalization
(isa function) to a more general or a more specific class is almost 1:1, which means
that we perform similar operations on the PSM level to maintain consistency.
There is one exception when moving generalization to a more general class.

Shipping
country

gps

GlobalAddress

country

ShippingAddress
gps

Address

street

city

LocalAddress
street

city

PIM before:

PIM after:

PSM before:

PSM after:

Shipping
gps

Address
street

city

GlobalAddress
country

GlobalAddress
country

ShippingAddress

gps

LocalAddress

street

city

Figure 10.1: Propagation of moving a generalization to a more general class.

The example is in Figure 10.1. The blue lines represent the interpretation of
PSM classes against PIM classes. In the example of resetting the isa function to a
more general class, the new general class for ShippingAddress is LocalAddress.
On the PSM level, we already have the Address class a general class to Shipping,
so it would seem that no propagation is necessary. However, we have an attribute
Shipping’.country’ and I(Shipping′.country′) = GlobalAddress.country.
This is the use of implicit inheritance (Definition 9.5, rule 9.2) and that rule
would be broken. Therefore, we need to create GlobalAddress’ on the PSM
level and keep the country attribute there. The opposite direction - moving a
generalization to a more specific class is really a 1:1 propagation - we simply do
the PSM counterpart operation. Another easy operation is removal of a general-
ization, which is in fact setting the isa function to λ (υisa

c (ShippingAddress, λ)).
When the PIM generalization is removed, we simply remove its PSM counter-
part. Formally, (∀C ′ ∈ S ′c : I(C ′) = Cs)(isa(C ′) = λ). Next are the operations
for movement of attributes and associations through the inheritance hierarchy.
Because the cases for attributes and associations are similar, we show here only

126

the cases for the attributes. We start with moving an attribute to a more general
class. In the first case the more general class is also present in the PSM schema
and the movement of the affected attribute follows the movement in the PIM
schema. In the second case, the schema remains unchanged, because the more
general class is not present in the PSM schema and the movement does not violate
rule 9.2 of Definition 9.5. Finally, there is moving an attribute to a more specific

PIM after: PSM2 after:PSM1 after:

PIM before: PSM2 before:PSM1 before:

GlobalAddress

country

ShippingAddress

country

gps

GlobalAddress

country

LocalAddress

street

city

LocalAddress

street

city

Address
street

city

LocalAddress

street

city

country

ShippingAddress

gps

LocalAddress

street

city

country

GlobalAddress

Address
street

city

country

ShippingAddress

gps

ShippingAddress

gps

Figure 10.2: Propagation of moving an attribute to a specific class.

class. This is demonstrated in Figure 10.2. Again, we have two cases. In PSM1,
there is a more specific class ShippingAddress’, whose interpretation inherits
the target, more specific class GlobalAddress through interpretation. Formal-
ly, GlobalAddress � ShippingAddress = I(ShippingAddress′). Therefore we
move the corresponding attribute there. It there was no such class, we would
have to create one, as can be seen in PSM2.

127

10.4 Implementation
We have implemented the proposed inheritance extension in a tool called eXolutio
(see Chapter 12). It is a proof-of-concept desktop application for conceptual XML
data modeling (screenshot in Figure 10.3). It implements the PIM and PSM
modeling languages described in [96] and operations for evolution of the PIM and
PSM schemas described in [89]. It provides a designer with a set of operations
which are composed of the atomic operations described earlier and it implements
their propagation. At the highest level, eXolutio is based on the Model View
Controller (MVC) design pattern. For the purpose of this chapter, the atomic
operations are implemented in the exact same way they are described here. We
use the implementation to experimentally demonstrate that the proposed set of
atomic operations is complete, i.e. that the atomic operations are sufficient for
real-world situations. We do not prove completeness formally in this chapter.

Figure 10.3: eXolutio screenshot

10.5 Evalutation
We have evaluated the inheritance extension to our conceptual model as we mod-
eled a medium-sized family of XML schemas of the Data Standard for eHealth
in the Czech Republic (DASTA)2. Due to lack of space we only summarize our
results. The PIM schema contained more that 70 classes, 100 associations includ-
ing conceptual inheritance relations and hundreds of attributes. Mapped to the
PIM schema were 12 XML formats (PSM schemas). Since 2006, the format has
24 versions since it is evolved approximately four times a year. Our approach im-
proved the speed with wich programmers were able to orientate themselves in the
schemas and it also helped in revealing inconsistencies in the XML schemas. As
to the evolution operations, we picked one of the evolution steps and performed

2http://ciselniky.dasta.mzcr.cz/ (in Czech only)

128

http://ciselniky.dasta.mzcr.cz/

the changes in eXolutio using our operations formalism and we confirmed that up
to 60% of operations that would have to be done manually by a domain expert
can be done automatically using our approach.

10.6 Related Work
The XML schema languages for specification of XML schemas are not very user-
friendly. Therefore, approaches for designing XML schemas at a conceptual level
were introduced. In comparison to our approach, none of the approaches con-
siders a formal binding between XML schemas and conceptual schemas like our
interpretation. They only show how a conceptual schema (ER or UML) is trans-
lated to an XML schema or vice versa but they do not consider the case when
more XML schemas need to be designed which is the motivation for our concep-
tual model and schema evolution. Therefore, the other approaches are limited
when it comes to modeling multiple schemas and in particular the conceptual
and structural inheritance hierarchies. For work related to conceptual modeling
of XML in general see [96, 97, 137, 18].

Evolution management The current approaches towards evolution manage-
ment can be classified according to distinct aspects [74, 34]. The changes and
transformations can be expressed [104, 21] as well as divided [28] variously too.
To our knowledge there exists no general framework comparable to our concep-
tual model; particular cases and views of the problem have previously only been
solved separately, superficially and mostly imprecisely without any theoretical or
formal basis. For a full survey of work related to schema evolution management
refer to [89]. The need for simple, well-defined operations for change management
has been identified for example in [127].

Evolution of inheritance The problem of evolution in XML schemas with in-
heritance has been also identified in [24] as their future work. In [39], inheritance
in UML to XML Schema translation is mentioned, however, the authors do not
say how they translate UML generalization change to a change in XML Schema.
To our best knowledge, there is no other approach focusing on inheritance evolu-
tion management in XML. In [120], the authors propose a metric for improving
modifiability of class inheritance hierarchies.

10.7 Conclusions
In this chapter we described our approach to evolution of XML schemas described
by the conceptual model for XML that can be applied to the common case of
multiple web service interfaces with common data domain. We extended our
formal model of operations with the ones regarding inheritance management and
their propagation. We did this formally and on examples. We briefly mentioned
implementation, evaluation and related work.

129

130

11. When Theory Meets
Practice: A Case Report on
Conceptual Modeling for XML
Modern information systems usually exploit numerous XML formats for com-
munication with other systems. There are, however, many potential problems
hidden. This includes the degree of readability, integrability and adaptability of
the XML formats. In the first part of this chapter we demonstrate the problems
on a real-world application – the National Register of Public Procurement in the
Czech Republic. In the second part we show how we can improve readability, in-
tegrability and adaptability of the XML formats of this system with a conceptual
model for XML we have developed in our previous works. Finally, we general-
ize our experience gained into a methodology which can be applied in any other
problem domain.

This chapter shows an aspect of conceptual modeling for XML which can be
used to improve various qualities of a family of XML schemas. The contents of
this chapter was published as a conference paper When Theory Meets Practice: A
Case Report on Conceptual Modeling for XML1 [88] in 2011 Sixth International
Conference on Digital Information Management (ICDIM 2011).

11.1 Introduction
In this chapter we pursue a concrete portal of Czech government – the National
Register for Public Procurement (NRPP)2. We show that its XML formats are
not very readable, integrable and adaptable and show how we used our previous-
ly developed conceptual model for XML and, especially, its implementation to
improve these drawbacks. We show that a conceptual schema which is created in
addition to XML schemas specifying the XML formats provided by NRPP may
be used to significantly increase readability, integrability and adaptability of the
XML formats. This work is a case study of a selected real-world governmental
portal where we apply our previous theoretical results in the area of conceptual
modeling, integration and evolution of XML schemas. In the end of the chapter
we generalize the case study into a methodology which can be applied in other
cases with similar problems.

The chapter is organized as follows: In Section 11.2, we introduce NRPP
and discuss its drawbacks regarding readability, integrability and adaptability of
the provided XML formats. In Section 11.3, we briefly introduce sample PIM
and PSM schemas. In Section 11.4, we introduce our solution of the drawbacks
based on the proposed conceptual model for XML. In Section 11.5 we generalize
our experience with NRPP into a methodology which shows how our approach
may be applied in any other problem domain. In Section 11.6 we discuss related
work and evaluate our approach in comparison with the related work. Finally,
we conclude in Section 11.7.

1http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6093322
2http://www.isvz.cz (in Czech only)

131

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6093322
http://www.isvz.cz

11.2 Public Contracts in the Czech Republic
NRPP is intended for publishing data about public contracts by various public
authorities in the Czech Republic. Publishing a contract is obligatory when the
contracted price exceeds a level given by the current legislation. Otherwise, it is
only optional. An authority may send contract information formatted as an XML
document to NRPP. NRPP provides various XML formats intended for different
situations, e.g. contract notification, supplier selection or contract finalization.
Fig. 11.1 shows a sample XML document with a concrete contract notification in
an XML format currently accepted by NRPP.

<contract_notification>

 <cont_oficial_title>Charles Univ.</cont_oficial_title>

 <cont_postal_address>Ovocný trh 3</cont_postal_address>

 <cont_city>Praha 1</cont_city>

 <cont_zip>11636</cont_zip>

 <cont_country>CZ</cont_country>

 <title>Úklid vybraných objektů ...</title>

 …

 <price_total>13000000</price_total>

 <currency>CZK</currency>

 <VAT>20</VAT>

 <docs_oficial_title>OTIDEA a.s.</docs_oficial_title>

 <docs_postal_address>Na Příkopě</docs_postal_address>

 <docs_city>Praha 1</docs_city>

 <docs_zip>110 00</docs_zip>

 <docs_country>CZ</docs_country>

</contract_notification>

Figure 11.1: Sample XML document which demonstrates low readability, inte-
grability and adaptability of NRPP XML formats.

We made a detailed study of the XML formats used by NRPP from three
different points of view: readability, integrability and adaptability of the XML
formats. We describe the viewpoints in detail in the rest of this section. In the
end, we summarize their properties from these three viewpoints (see Tab. 11.1).
For our purposes, by the term XML format we mean one of the XML formats sup-
ported by NRPP and by XML document we mean an XML document formatted
according to one of the XML formats, if not specified otherwise.

Readability of XML Formats To be able to process XML documents, devel-
opers need to understand the syntax and also the semantics of the XML formats.
They need to know what part of the reality each particular XML element or XML
attribute represents and, vice versa, how a selected part of the reality is represent-
ed in the XML formats. For example, they need to know that XML element title
in our sample XML format represents contract title. They also need to know that
docs_postal_address represents a postal address, where an interested supplier
might get a documentation for the contract while that cont_postal_address
represents the main contact address for the contract. And, it is also important to
know that price_total represents a total price expected by the contractor and
not a final contract price or another price (there are 4 kinds of price considered).

By the term XML formats readability we denote the described ability of de-
velopers to understand the XML formats. First, readability may be increased by
exploiting the hierarchical nature of XML which allows for using separate XML
elements to nest XML content representing different objects. However, this is

132

not the case of the studied XML formats of NRPP. For example, instead of nest-
ing different addresses in separate XML elements, the XML document depicted
in Fig. 11.1 uses prefixes “cont_” and “docs_” which is not very transparent.
Second, XML schemas of the XML formats (expressed in, e.g., DTD [126] or
XSD [128] languages) should be provided. However, XML schemas only allow
for describing the syntax. The semantics is not expressed explicitly and must be
intuitively deduced by developers. A simple solution is to provide the developers
with a textual documentation of the XML formats. A more advanced solution
is to also provide them with a conceptual schema of the problem domain which
describes the semantics widely and more precisely.

Integrability of XML Formats Another problem arises when the data needs
to be converted from the XML formats to another data representation (e.g. a
local database inside an authority’s information system or other XML formats)
and vice versa. Ideally, both representations are the same and, therefore, no
export/import scripts are necessary. However, this is a rare case and transfor-
mation scripts need to be developed by developers. These scripts might be, e.g.,
SQL/XML [48] scripts for integration with a relational database or XSLT [52]
scripts for integration with other XML formats.

By the term XML formats integrability we denote the measure of how easy
it is to develop such scripts. To increase the integrability, it is useful when the
same concept (e.g. address) is represented in the same way in the XML formats
(e.g. by XML elements street, city, zip, etc.). In that case, parts of the scripts
might be reused for those parts of the XML formats. However, this is not always
possible (e.g. at some places of the XML formats only zip itself is present). In
other cases, the name of an XML element or XML attribute needs to be different
(e.g. XML elements supplier-city and contractor-city, both representing
city, in an XML format which we use to report on distribution of suppliers and
contractors across the cities in the Czech Republic). In these cases, a mapping of
XML elements and XML attributes of the XML formats to the conceptual schema
(e.g. mapping supplier-city and contractor-city to a shared attribute city
in the conceptual schema) might be useful. This would allow the developers to
map their local data representation schema (e.g. relational database schema) to
the conceptual schema instead of mapping the schema to many XML formats.
By composing the mapping it would be possible to generate the transformation
scripts automatically or, at least, to help the designers with their development.

Adaptability of XML formats The last but not least problem arises when
a change needs to be made in one or more XML formats. We distinguish two
kinds of changes. First, it may be necessary to make a change in an existing
XML format such as adding an XML element or XML attribute or moving it
from its current location in the XML format to another. Second, there may
appear a requirement to create a completely new XML format or to remove an
existing one. Changes to the XML formats may be required because of various
technical reasons (e.g. to increase their readability or integrability) or because of
changes in the domain (i.e. at the conceptual level). The second case is what is
currently happening in the Czech Republic. A new legislation is currently being
prepared and it will result into some changes in the XML formats. Not only new

133

Property Evaluation of NRPP
Readability – hierarchical nature of XML not exploited

– XML schema definitions missing
– conceptual schema of public procurement do-
main missing
– documentation of XML formats provided (in
form of Excel sheet)

Integrability – same concepts (e.g. address) represented in dif-
ferent ways
– integration via a common schema not possible
– automatic generating of transformation scripts
is not possible

Adaptability – adaptability via a common schema and automat-
ic propagation to XML schemas not possible
– adaptability of integration and transformation
scripts not possible

Table 11.1: Summarization of readability, integrability and adaptability proper-
ties of NRPP

kinds of documents will be required to be sent to NRPP (which means creating
completely new XML formats). There will also be legislative changes which will
result into changes to existing XML formats. For example, a complete list of bids
for a contract will be mandatorily published instead of their total number which
is required by the current legislative.

By the term XML formats adaptability we denote the measure of how easy
it is to change the XML formats and react on these changes. For example, let
us consider a requirement to have a street name and number for each address in
two separate strings instead of a less detailed postal address in one string. In our
sample XML format depicted in Fig. [126], this means replacing XML element
cont_postal_address with more detailed cont_street and cont_street_no.
Similarly, XML element docs_postal_address must be replaced. And other
XML elements representing postal address in other XML formats need to be
adapted accordingly as well. A more complex change is the one which will be
caused by the new legislation. Wherever number_of_bids attribute from the PIM
schema is represented in the XML formats, there will be necessary to include the
detailed information about each particular bid and the bidder and distinguish the
winning bid.

To increase adaptability in this case, it is useful to have only one XML rep-
resentation for a given concept (e.g. one sequence of XML element declarations
for addresses) and share it across all XML formats. In that case a change may
be implemented only at this one place instead of a repetitive change at various
places of the XML schemas. However, this is not always possible (similarly to
the case of integrability). In these cases, the mappings of the XML schemas to
the conceptual one would help. A change could be then made only at one place
of the conceptual schema (e.g. in a class Address) and propagated to all XML
schemas which involve XML representations of addresses.

The adaptability is also important for the developers of information systems

134

which communicate with NRPP. First, when a new XML format appears, they
need to develop scripts which export/import their data from/to the XML for-
mat. This is a problem similar to the integrability described above. Second,
when an existing XML format is changed, they need to adapt their scripts and,
possibly, adapt their internal data representation (e.g. relational database). For
example, replacement of XML element cont_postal_address with cont_street
and cont_street_no may result into a corresponding change of local relational
storage and also SQL/XML scripts which translate the relational representation
into the XML formats. Similarly, replacing the number of bids with details of
particular bids may lead to changes in the local storage and scripts. As in the
previous case, adaptability in this case could be increased when a mapping of the
XML formats required by NRPP and local database schema to the conceptual
schema would exist. This could inform the developer about what parts of the
local storage are affected by the change or whether the local storage needs to be
extended. This could also help with adapting the transformation scripts.

We summarize the properties of NRPP in Tab. 11.1 from the three viewpoints.
In the following sections, we demonstrate how to improve them by adding a
common conceptual schema.

11.3 Conceptual Model for Public Contracts

tttttttt

eeeee

SSSS

nennneneenn

nn}}nnne}}}}}}}

esn}snnesn

esn}nssn

nesneene

n}s}en}n}}}enn}}}}}}}

ttttttt

nnnesne}nennnn

essee

nsnne

ntnttnnttntt

n}enese}eeeee

SLL

nnnese}snnnenn

nees

pen

nn}nens

etnte

n}nnenns

TTS

nnene}enese

nnene}}nns

nnene}en

ntnt

stts ****

snss ****

ttstttttttt

syyyynestsy

***1

edyettes

tntees
***1

lntty
***1

tlletes

***1

00000000

Figure 11.2: PIM Schema of Public Procurement Domain

Platform-Independent Model A sample PIM schema of a part of the public
procurement domain is depicted in Fig. 11.2. We describe only a selected part
of the diagram for the reader (we kindly ask the reader to interpret the rest
intuitively). There is a class Contract which models public contracts. Further,
there is a class Contact which models contact information. It is associated with
Organization class which models organizations. Each contact is associated with
one and only one organization and with many contracts. For a contract there is
the main contact, contacts where documentation may be acquired, and contact
where bids should be sent. These relationships between contracts and contacts
are modeled by associations main, doc, and bids, respectively.

Platform-Specific Model Two sample PSM schemas are depicted in Fig-
ures 11.3(a) and 11.3(b). They model two particular XML formats. From the

135

conceptual perspective, components of both PSM schemas are mapped to the
components of the PIM schema depicted in Fig. 11.2. The interpretation (map-
ping) specifies the semantics of the mapped components of both PSM schemas in
terms of the single PIM schema. We do not display the mapping explicitly. In our
example it can be deduced intuitively (but not in general). Mapped PSM com-
ponents are shown in the brown color and the others in the grey color. There is
also a special kind of class displayed in the blue color. These are called structural
representatives. They have a special meaning from the grammatical perspective
and we explain them later.

Let us discuss the PSM schema depicted in Fig. 11.3(b). The PSM class
Contract is mapped to the PIM class Contract. The PSM class Contact is mapped
to the PIM class Contact. And, the PSM classes Contractor and Supplier are
mapped to the PIM class Organization. The other PSM classes are not mapped
to any PIM class, namely Geography and Contracts. It means that they have no
semantics from the conceptual perspective.

The attributes and associations are mapped as well in an intuitive manner.
For example, the PSM association connecting Contract and Contact is mapped
to the PIM association main. It specifies that the PSM association associates
each contract with a main contact, not with a contact which provides documents
nor with a contact which accepts bids for the contract.

llllllllllllllll

llllllllll

eeeeeeeeeeeee

seseeeeesssess

eeey

lllllllllllllllll

lllllll

llllllll

eeeee

sssseseeeesess

llllllll

eellllellll

eeseesesseee

ellllellll

eeseeesseee

66666666

yyyyyyyyy

syssyysss

nnnnnn

syssyysss

syssyyss

eneen

nsssnnsnsssnss

syssyyss

syssyss

syssyyssyy

snsesessssnnss

yney

rnnensyenn

rryyrryy
syssyyssyy

sryyrryy

99999999

Figure 11.3: Two sample PSM schemas of (a) XML format for contracts viewed
by regions, and (b) XML format for contractor details

11.4 Improving Quality
Having introduced the conceptual model for XML, we are now ready to show how
we exploited it for increasing the readability, integrability and adaptability of the
XML formats for public procurement in the Czech Republic. In this section we
suppose the public procurement domain modeled by the PIM schema depicted in
Fig. 11.2. NRPP uses 17 different XML formats for communication with other

136

Contact

Organization

Contract

- title
- number_of_bids

ContractorDetail

contractor_detail

- oficial_title
- postal_address
- city

0..*

1..* contract

PriceTotal
- price_total

PriceRange
- price_from
- price_to

|
1..1

1..1 1..1

<contractor_detail>

 <oficial_title>

 Charles Uni

 </oficial_title>

 <postal_address>

 Ovocný trh 3/5

 </postal_address>

 <city>Praha 1</city>

 <contract>

 <title>Úklid ...</title>

 <number_of_bids>

 4

 </number_of_bids>

 <price_total>

 12000000

 </price_total>

 </contract>

 <contract>...</contract>

 <contract>...</contract>

</contractor_detail>

<contracts>

 <region>PRG</region>

 <contract>

 <title>Úklid ...</title>

 <number_of_bids>

 4

 </number_of_bids>

 <contractor>

 <postal_address>

 Ovocny trh 3

 </postal_address>

 <city>Praha 1</city>

 </contractor>

 <supplier>

 <postal_address>

 Kladenska 43

 </postal_address>

 <city>Kladno</city>

 </supplier>

 </contract>

 <contract>...</contract>

</contracts>

Figure 11.4: Two sample XML documents valid against the XML format specified
by PSM schemas depicted in 11.3(a) and 11.3(b), respectively

information systems. Therefore, we have created 17 PSM schemas specifying
these XML formats and mapped them to the PIM schema depicted in Fig. 11.2.
An example of an XML document in one of the XML formats is depicted in
Fig. 11.1 as we have already discussed. One more XML format is discussed later
in this section. For modeling we used our experimental implementation eXolutio
which may be freely downloaded at http://exolutio.com and tested.

11.4.1 XML Format Readability
As we explained in the introduction, the problem of readability comes into play
when an XML format is shown to a developer for the first time. If it is on-
ly described by an XML schema, it may be quite hard and time consuming to
get a basic orientation in the format, especially when the semantics descrip-
tion is missing and/or the XML schema or the XML tags themselves are not
fromatted correctly or, in the worst case scenario, when there are no XML
schemas and the developer is supposed to learn the format from document in-
stances. Firstly, we have solved the problem of missing XML schemas by inferring
them from a set of instance XML documents. For this, we used our tool jInfer
(http://jinfer.sourceforge.net) which is freely available for download. How-
ever, inferring XML schemas solved the problem only partially because the XML
formats themselves are not very well structured. They do not suitably exploit the
hierarchical nature of XML as we have already discussed. Therefore, we created a
conceptual schema in the form of the PIM schema partly depicted in Fig. 11.2 and
used our reverse-engineering method [60] which allowed us to semi-automatically
convert the XML schemas to PSM schemas and derive their mapping to the PIM
schema. The PSM schema in Fig. 11.5(a) is the result of the reverse-engineering
method applied to the XML document in Fig. 11.1.

The result is much more readable for the developers because it helps them to
understand not only the syntax but also semantics of the XML formats (because
of mappings to the conceptual PIM schema). For example, our tool can highlight
PSM components mapped to a selected PIM component or, vice versa, highlight
a PIM component (e.g. by a different color) which is the target of the mapping of

137

http://exolutio.com
http://jinfer.sourceforge.net

the selected PSM component. Or, we can display the list of PIM components at
one side and list of PSM components at the other side and display the full mapping
on a single screen. For this, we exploit the interpretation of a PSM schema against
a PIM schema.Each PSM schema is bounded with its corresponding XML schema.
Therefore, the designer may easily switch between the PSM schema and respective
XML schema.

11.4.2 XML Format Integrability
The PSM schemas of the XML formats and their mappings to the PIM schema
created in the previous step could also be very helpful for integrability of the XML
formats. When a developer maps PSM schemas of own legacy XML formats to
the PIM schema (possibly from some legacy XML schemas using our reverse-
engineering method [60]), we can use the mappings to automatically generate
XSLT scripts which transform XML documents from the legacy XML formats
to the XML formats of NRPP. This is, of course, possible only when the lega-
cy XML formats cover the same part of the procurement domain as the XML
formats of the register. We demonstrate how XSLT scripts are created from the
mappings later in Section 11.4.3, where we describe how XSLT scripts transform-
ing XML documents from one version of an XML format to another version may
be generated.

Similarly, the developer can map a schema of a local relational database to the
PIM schema. This possibility is, however, not covered by our current methods
and is the matter of our ongoing work.

11.4.3 XML Format Adaptability
Despite the importance of readability and integrability, we are mainly interested
in increasing adaptability. In this section, we show how our conceptual model for
XML facilitates (1) creating a new XML format, (2) adapting an existing XML
format to increase its readability, and (3) adapting the XML formats on the basis
of changes caused by a new legislation in public procurement.

Our adaptability methods (formally described in [91, 89]) are based on a set
of atomic operations which allow for editing individual PIM and PSM schemas.
When executed, the changes propagate from the PIM schema to sequences of
atomic operations over the mapped PSM schemas and vice versa. We have de-
veloped a formal model behind the atomic operations which ensures that the
operations are propagated correctly. It means that the PIM and mapped PSM
schemas remain consistent with each other after the propagation. Due to the
lack of space, we do not introduce the formalism in this chapter. The current
literature distinguishes four types of operations for schema editing: creation, re-
moval, sedentary and migratory. The former two allow for creating and removing
components (i.e. classes, attributes, etc.). The sedentary operations allow for
modification of component properties such as names, data types, cardinalities,
etc. The migratory operations move components in schemas, e.g. move attributes
between classes. These operations are indeed different in meaning from simply
creating a new attribute or association and deleting the old one and are handled
differently in the propagation mechanism.

138

Our atomic operations are supplemented with a propagation mechanism. For
example, removing the PIM attribute contact_person of the PIM class Contact
from our sample PIM in Fig. 11.2 is mandatorily propagated to removing each
PSM attribute mapped to contact_person or removing their mapping to con-
tact_person. Similarly, moving the PIM attribute email of Contact to Organiza-
tion is mandatorily propagated to moving mapped PSM attributes respectively
or removing their mapping. The final decision remains for the developer.

We use one additional type of atomic operations necessary for preservation
of semantics and for the propagation mechanism. This type declares that two
sets of attributes or two sets of associations are semantically equivalent. We
call these operations synchronization operations. These operations do not have
any effect on the schema on which they are performed, but are necessary for
correct propagation. For example, splitting an attribute postal_address into more
detailed attributes street and street_no in the PIM schema does not mean only
creating the two new attributes and removing the old one. It also includes a
specification that the old attribute is semantically equivalent to the new ones.

The atomic operations are not intended to be used directly by an XML schema
developer. They are too primitive and, therefore, not user friendly. For example,
they do not include the already mentioned operation for splitting an attribute.
They are meant to be used in various combinations, so-called composite opera-
tions, which are more user friendly. For example, we may define the operation for
splitting an attribute to two new attributes as a sequence of atomic operations
which create the new attributes, synchronize them with the old attribute and,
finally, remove the old attribute.

As a small demonstration of how the formalism looks like see Table 11.2
containing formal descriptions of some operations regarding attributes.

Operation Kind Effect
A = αa(C) Addition Adds a new attribute A

to an existing class C.
δa(A) Removal Removes an existing at-

tribute A.
σa(X1,X2) Synchronizing Synchronizes two sets of

attributes X1 and X2.
p: (∃C ∈ Sc)(X1,X2 ⊆
attributes(C))

Table 11.2: Example atomic operations for PIM schema adaptation

The example composite operation of splitting an attribute would be described
as A1 = αa(C), A2 = αa(C), σa({A}, {A1, A2}), δa(A).

The advantage is that we can quite easily describe the impact each individual
atomic operation has on the schemas and we can describe how they should be
propagated between the two levels. When atomic operations are combined into
a composite operation, the propagation of the resulting operation is the same
as a concatenation of the individual atomic operations. Our formalism ensures
correctness of such propagation. This makes the creation of composite operations
versatile as their designer does not need to be concerned about the propagation,
which is handled by this mechanism.

139

aaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaa

eeeee

aaaaaaaanaaaaaaaaaaaa

taaaaaaaaaa

nnnennnnennennennnn

nnnenelnee

nnnennenne

taaananaaanaaaaa

nnnenneeneneneeeee

nnnenLLL

nnnennnnenennssnenn

nnnenneey

nnnenpen

nnnennnyneny

aaaaaaaaaaaa

SLSS

sennneneenn

nn}nnnse}}}}}}}

esnnlnneen

esnnsnyn

senseene

laaaalaaal

nynnenny

TTS

nnenenenene

laaaaeaana

nynnenny

TTS

nnenenennl

nnenenen

aaaaaaaaaa

snnnnnnennennennnn

snnnelnee

snnnnenne

aaananaaanaaaaa

snnnneeneneneeeee

snnnLLL

snnnnnnenennssnenn

snnnneey

snnnpen

snnnnnyneny

66666666

aaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaa

eeeee

aaaaaaaanaaaaaaaaaaaa

taaaaaaaaaa

nnnennennennnn

elnee

nenne

taaananaaanaaaaa

neeneneneeeee

LLL

nnnenennssnenn

neey

pen

nnyneny

aaaa

aaaaaaaaaaaa

SLSS

sennneneenn

nn}nnnse}}}}}}}

esnnlnneen

esnnsnyn

senseene

enene

laaaalaaal

nnenenenene

enene

laaaaeaana

nnenenennl

nnenenen

tnentnnenne

aaaaaaaaaa

saas

22222222

laaaa

nynnenny

TTS

Figure 11.5: (a) PSM schema reverse-engineered from the XML document de-
picted in Fig. 11.1 and (b) its adaptation which models a better readable XML
format

Creating an XML Format We first studied the adaptability problem of cre-
ating new XML formats. We instructed a developer to specify an XML format
intended for details of public procurers and another developer to specify an XML
format intended for reporting on distribution of public procurers or suppliers.
Both developers were instructed to use our tool to create a PSM schema on the
basis of the PIM schema from Fig. 11.2. The resulting PSM schemas are depicted
in Fig. 11.3(a) and 11.3(b). The PSM schemas were then automatically trans-
lated to XML schemas. The developers also tried to create the XML schemas
manually. The experiment proved that designing the XML formats in the form
of PSM schemas is easier.

The tool provides several operations for creating PSM schemas on the ba-
sis of a PIM schema. For example, when one of the developers needs to design
attributes of the PSM class Organization, which is mapped to the PIM class Or-
ganization, (s)he does not need to create them manually. The tool offers him/her
the set of PIM attributes of the PIM class Organization and (s)he selects those
which should be represented in the PSM schema. The tool then creates the

140

corresponding PSM attributes. Similarly, when the developer needs to design
the child PSM associations of the PSM class Organization, (s)he does not create
them arbitrarily on his/her own. The tool offers him/her the set of associations
connected to the PIM class Organization and the developer selects which ones
should be represented as the child PSM associations. The tool then creates the
corresponding PSM associations with correct mappings automatically.

Such process of designing PSM schemas on the basis of the PIM schema is
not only fast and easy. It also prevents from errors or mismatches that would
undoubtedly occur if the developers would have to create the XML formats man-
ually only on the basis of some informal verbose specification. For example, one
of the developers could forget to include some required part of the domain (e.g.
organization city) because (s)he missed it in the verbose specification. Or, (s)he
could omit that there are two possible kinds of price information – total price and
price range. (S)he could also model a particular part of the reality at the differ-
ent level of granularity. The tool prevents from such mismatches as it forces the
developers to work with the shared PIM schema. On the other hand, it provides
possible semantics of each component in the PSM schema, e.g. possible seman-
tics of PSM associations connecting PSM classes mapped to PIM classes Contract
and Contact (there are three possible PIM associations connecting these classes
and, therefore, three possible semantics). All this ensures that the developers
have the same view of the problem domain and, therefore, they create the XML
formats coherently (from the conceptual point of view).

Adapting an XML Format to Increase Readability Second, we studied
the adaptability problem when an existing XML format needs to be augmented
to increase its readability. Such adaptation was required, for example, in the case
of the XML format whose PSM schema is depicted in Fig. 11.5(a). As we have
already noted, the main problem of the XML format is its flat structure. The
primary authors of the XML format tried to increase the readability by indicating
XML elements which conceptually belong to the same concept by prefixing their
name with a common prefix (e.g. “cont_” and “docs_” prefixes). However, this
is not convenient for the reasons described below.

Only after studying additional documentation, it is possible to identify distinct
concepts related to the XML elements. The owner concept is only in some cases
indicated by the common prefix (e.g. cont_ or docs_). This can be partly solved
by providing a PIM and a PSM schema, which considerably increase readability.
Moreover, common prefixes introduce redundancy into the document, when the
same prefix is repeated again and again. From the point of view of the designer
of an application communicating with the register, the XML format is also not
suitable. The application that is required to accept input data in this format,
needs to rely heavily on the position and names of the elements, whereas the
integral feature of XML as a language – its hierarchical nature – can not be
utilized at all.

We were asked to increase the readability of the XML format by removing
these common prefixes and replacing them by additional XML elements wrapping
the original XML elements with the same prefix. We achieved this in our tool
by augmenting the PSM schema with application of a few atomic operations
for renaming PSM components. This also allowed us to introduce a structural

141

representative to the PSM schema to further simplify it. The result is depicted
in Fig. 11.5(b).

All the proposed changes neither extend, nor narrow the semantics of the XML
format. However, they change its structure. Therefore, if there are some XML
documents valid against the old XML format, then they need to be transformed
so that they are valid against the new XML format. Similarly, various informa-
tion systems which communicate with the public procurement register may still
need to communicate using the old version. Therefore, we need an adapter which
transforms XML documents for the purposes of communication with these part-
ners. In [71] we have developed a method which generates such transformation
script expressed in the XSLT language automatically when two versions of the
same XML format in a form of versioned PSM schemas are supplied. As the
PSM schemas evolve from one version to the other using our atomic operations
described earlier, the tool keeps a record of what the components transformed
to and how. From this record and from both of the PSM schemas (the old and
the augmented one), we can generate an XSLT script which transforms the XML
document instances accordingly.

Adapting an XML Format to Suit New Legislation Finally, there is the
problem of adaptability when a change in the legislation occurs. In our case,
the new legislation demands details about individual bids instead of a simple
information about the number of bids. This means not only augmenting an
individual XML format but, primarily, augmenting the PIM schema because the
change is a conceptual change. The change to the PIM schema may be easily done
by a developer in our tool using a set of operations which allow for converting the
attribute number_of_bids of the PIM class Contract to a new class Bid associated
with Contract. Two associations connecting Bid and Contract are created by the
developer. An association winner associates the winning bid with the contract
while an association offer associates the other bids. The new class Bid moreover
contains new attributes which model additional information about particular bids.
Also, Bid is associated with Organization and Price. The respective associations
associate the bidder and offered price by the bidder for each bid. The changes
to the PIM schema are depicted in Fig. 11.6(a). Conceptually, the change means
that the original information about the number of bids was replaced by particular
bids associated with the contract where one of them is listed as the winning bid.
Instead of the original winning supplier and his offered price, a particular bidder
and offered price is considered now.

After the PIM schema is changed, it becomes inconsistent with the original
PSM schemas which still contain PSM attributes number_of_bids mapped to the
removed PIM attribute number_of_bids. Therefore, these PSM schemas must
be adapted accordingly. The adaptation is not done by the designer manually.
The tool helps him/her to solve the inconsistencies. It shows all affected places
and offers possible propagations. This includes (1) removing the affected part
of the PSM schema, (2) removing the mapping of the affected part to the PIM
schema, or (3) augmenting the the affected part so that it is consistent with
the PIM schema. After the designer decides, the tool automatically performs
the selected steps. The result of propagation to the PSM schema depicted in
Fig. 11.3(b) is depicted in Fig. 11.6(b) (the figure only shows the changed parts

142

tttttttt

ntnttnnttntt etnte

dnd

eeee

eeeeeeee

rnddet tddeted

tddet

rnttet

22222222

yyyyyyyyy

syssyysss

syssyysss

syssyyss

syssyyss

ddd

eeee

eeeeeeee

rerereeeer

rryyrdyy

sryyrdyy

yrryy

dee

ddsddd

rdssyy

9999999

Figure 11.6: (a) Adaptation to PIM schema cause by new legislation, and (b)
PSM schema adapted by propagation mechanism on base of changes to PIM
schema

of the PSM schema). The designer selected the third option, i.e. to augment
the PSM schemas. We can see that number_of_bids was removed. Instead,
all offered bids and one distinguished winning bid are present. For each bid a
supplier is present as well. This corresponds to the changes performed in the
PIM schema. Similarly, the change is propagated to the PSM schema depicted
in Fig. 11.3(a) and other PSM schemas which contained the information about
the offered number of bids.

11.5 Methodology
The solution presented in the previous section is not specific to NRPP. In this
section, we generalize it to a methodology which can be applied to any system
with similar problems. In general, we suppose a family of XML formats which are
conceptually interrelated by a common problem domain (e.g. public procurement,
medical records, justice, etc.). The family may describe interfaces of web services
of a particular information system or it may be just a standard created by some
standardization organization without any relationship to a particular system (e.g.
OpenTravel.org [107]). In any case, providing only XML schemas specifying the
XML formats might bring the discussed problems with readability, integrability
and adaptability. As we have shown the problems may be solved by adding
a conceptual schema of the problem domain in a form of a PIM schema and
mapping each XML schema expressed as a PSM schema to the PIM schema. For
this, the following steps need to be performed by a designer of the XML formats:

1. Create a PIM schema that describes the problem domain at the conceptual
level.

2. Convert an XML schema of each XML format in the family to a PSM
schema.

143

3. Map each PSM schema to the PIM schema.

The first step must be done completely manually by the designer. The sec-
ond step is performed automatically by our tool. The last step is done semi-
automatically. The designer creates the mapping but our tool offers possible
mappings. The tool exploits component similarity based on string similarity, lex-
ical similarity and structural similarity and combines them by using adjustable
weights to one value. The possible mappings are offered sorted by this value, so
the most probable mapping is on the top. The details of this method are covered
in [60]. It may happen that the PIM schema does not completely cover the se-
mantics of all PSM schemas. In that case the PIM schema needs to be extended
by the designer which is also assisted by the tool.

The steps result into a set of PSM schemas mapped to the common PIM
schema. As we described in the previous steps it greatly increases the readability
of the XML formats. When an existing XML format (e.g. from a system we need
to communicate with) needs to be integrated into the existing solution, the steps
1 to 3 are performed again for this particular format and XSLT scripts which
transform data from or to this XML format may be generated automatically by
our tool as we have already discussed.

Another problem arises when a new XML format needs to be created directly
by the designer (e.g. a new view on the data processed by the system needs to be
implemented). This is a special case of adaptability. For this, the designer needs
to perform the following steps:

1. Identify a part of the PIM schema describing the part of the reality that is
going to be represented by the XML format.

2. Shape the selected part of the PIM schema into a new PSM schema that
models the XML format.

3. Convert the PSM schema to a corresponding XML schema expression.

The first step is done manually. The second step is also done manually but our
tool assists the designer by ensuring that the created PSM schema is consistent
with the PIM schema. As we have already discussed, creating a PSM schema on
the base of the PIM schema is much easier for the designer than simply writing
the XML schema expression manually. The last step is performed automatically.

There are two more adaptability problems that we have discussed in the pre-
vious text which includes adapting existing XML formats when a change occurs.
The designer needs to perform the following steps:

1. Identify the location where the change must be performed:

2. When the PIM schema is identified:

(a) Perform the change in the PIM schema.
(b) Propagate the change to the all affected PSM schemas.

3. When a PSM schema is identified:

(a) Perform the change in the PSM schema.

144

(b) Propagate the change to the PIM schema.
(c) When the PIM schema is affected, propagate the change to the all

affected PSM schemas.

The first step must be done manually. The designer must also manually per-
form the change in the PIM or in a PSM schema. For this, our tool offers a set of
various operations (e.g. adding/removing components, splitting/merging/moving
attributes and associations, etc.). The propagation (in PIM to PSM as well as
PSM to PIM direction) is performed semi-automatically. The tool automatically
identifies where the change needs to be propagated because the consistency be-
tween the PIM and PSM schemas is affected. It also automatically offers possible
solutions of the inconsistencies. The designer only selects the required solutions
which are then performed by the tool automatically.

11.6 Evaluation and Related Work
Our experiments showed that the proposed approach increases the readability
of XML formats and makes the designer more effective when she is integrating
or adapting the XML formats. In this section, we briefly compare the proposed
solutions with existing commercial as well as academic solutions.

Various approaches aim at increasing readability of XML formats. First, there
are tools such as Altova [6] which visualize XML schemas. However, visualization
is only the first step towards increasing readability. It does not provide additional
conceptual level we used in our work. Second, there are academical approaches
which aim at providing the conceptual level. We surveyed them in [97]. There
are approaches based on the well-known ER model [11, 69, 73] and approaches
which extend UML [117, 119]. However, we could not use them for our purposes,
because they all consider an individual conceptual schema for each particular
XML format. In our case we have a whole family of different XML formats used
in a single system and we need to bind them with a single conceptual schema.
This is what makes our approach unique – we consider the whole family of XML
formats and a shared conceptual schema each XML format is mapped to. For
more details, please refer to [92].

Regarding integrability of XML formats, again there are tools such as Altova
which allow for mapping XML formats on each other. However, again, they are
not suitable for our approach because we need to integrate any XML format with
any other XML format if it is possible and required by the designer. Therefore,
it is much easier to map the XML formats to a shared conceptual schema instead
of mapping on each other. It is then possible to test whether two XML formats
which are going to be integrated share the same part of the reality (i.e. whether
they are mapped to the same part of the conceptual schema) and derive the map-
ping automatically. We use various existing solutions based on schema matching
surveyed in detail in [121]. We combined these various approaches in our own
method [60].

And finally, there is the adaptability. The current approaches to adaptation
of XML formats were surveyed in [47]. They can be divided into several groups.
Approaches in the first group consider changes at the schema level and differ in
the selected XML schema language, i.e. DTD [2, 31] or XML Schema [127, 24].

145

In general, the transformations can be variously classified. For instance, chapter
[127] proposes migratory, structural and sedentary changes. The changes are
expressed variously and more or less formally. For instance in [24] a language
called XSUpdate is described. The changes are then automatically propagated
to the extensional level to ensure validity of XML data. There also exists an
opposite approach that enables one to evolve XML documents and propagate the
changes to their XML schema [22]. Approaches in the second and third group
are similar, but they consider changes at an abstraction of logical level – either
visualization [53] or a kind of UML diagram [39].

However, none of these approaches is appropriate for our problem. They all
work at the platform-specific level (according to our terminology introduced in
Section 11.3), since it directly models the components of the XML. They do
not consider the XML formats mapped to the conceptual schema as we do in our
approaches. In all the cases only a single separate XML schema can be processed.
Therefore, we could not use these approaches in our work, because we need to
process multiple different XML schemas at once when a change at the conceptual
level appears.

11.7 Conclusions
In this chapter we studied XML formats used by the National Register of Public
Procurement in the Czech Republic (NRPP) for communication with its partners.
We studied the XML formats of the register from three viewpoints: the degree of
readability, integrability and adaptability. We showed that the degrees are low
and they can be improved by using a conceptual schema of the problem domain
with XML schemas of the XML formats mapped to the conceptual schema. We
aimed mainly at increasing adaptability and showed that the conceptual schema is
useful when creating a new XML format, increasing the readability of an existing
XML format as well as making complex changes to various XML formats on the
basis of some legislative changes.

Using the experience with NRPP we proposed a general methodology which
shows how to apply our approach in any other domain as well. In the end, we
evaluated our approach by comparing it with other solutions in the area of XML
format readability, integrability and adaptability and showed the drawbacks tha
recent approaches have.

146

12. eXolutio: Tool for XML
Schema and Data Management
In this chapter we describe a tool for evolution and change propagation of XML
applications called eXolutio, which has been developed and improved in our re-
search group during last few years. The tool implements all the approaches de-
scribed in this thesis in the area of evolution of XML schemas. The text should
help the reader to get acquainted with the tool and its theoretical background.

The contents of this chapter was published as a conference paper eXolutio:
Tool for XML Schema and Data Management1 [55] in Dateso 2012 Annual Inter-
national Workshop on DAtabases, TExts, Specifications and Objects (DATESO
2012).

12.1 Introduction
In our research group we have focused on the area of efficient and correct manage-
ment of a family of XML formats for several recent years. Starting with a simple
idea of propagation of changes among related XML formats, we have gradually
extended our effort towards a robust framework and its implementation in a tool
called eXolutio. It currently supports the original idea of designing XML formats
using the principles of Model Driven Architecture (MDA) [78], their evolution,
and integration of new XML formats into the framework.

Contributions The aim of this chapter is to provide a covering overview of
our research in the area of XML evolution, to describe architecture and imple-
mentation of the eXolutio tool, to present results of our experiments with the
tool proving the concept and efficiency and a comparison of the tool with similar
tools.

Outline The rest of the chapter is structured as follows: In Section 12.2 we
introduce eXolutio, our tool in which we implement our research results. Exper-
iments with our tool are described in section 8.8. In Section 12.3 we discuss the
related work. Finally, in Section 12.4 we conclude.

12.2 eXolutio architecture
The implementation of our research results is a tool called eXolutio [55]. There
exists also an older version of our conceptual model and its implementation called
XCase [54], which is the predecessor of eXolutio. For simplicity, we will stick to
the current name. eXolutio allows the user to model a PIM schema and multiple
PSM schemas with interpretations against the PIM schema. The user can then
evolve the whole set of schemas coherently, because his operations are propagated
to all affected places by a mechanism described in [89].

1http://ceur-ws.org/Vol-837/paper19.pdf

147

http://ceur-ws.org/Vol-837/paper19.pdf

Figure 12.1: eXolutio screenshot

The architecture of eXolutio is based on the Model–View–Controller (MVC)
design pattern (Figure 12.2(a)). This means that we hold all the project data in
the model part, neither mixing it with operations, nor visualization. Whenever
a user issues a command, it is handled by the controller part. The controller
makes all the necessary changes in the model. The view part observes that the
model has changed and updates the visualization. The connections between indi-
vidual parts are loose enough so it is possible to, e.g., use multiple visualizations.
In particular, we have a Windows Presentation Foundation [76] visualization (a
desktop application) a Silverlight [75] visualization (a web application) and a no-
visualization (a console application) versions of eXolutio which all share the same
model and the same controller.
Model The model part of the tool based on our conceptual model [96] consists
of classes for each modeled component, such as a class, an association or an
attribute on each of the modeled levels (PIM and PSM), a class for PIM and
PSM schemas and a class for the whole project. Besides the obvious properties of
components like a name or a collection of attributes of a class, each component
class implements methods for serialization and deserialization of the component
to and from XML. Therefore, when we save and load a project, we simply call a
serialization or a deserialization method on all found objects in a certain order.
Finally, each schema contains lists of all the components of individual types in
that schema, so we can easily go through, e.g., all associations in a certain schema.
Since one of the main features of our tool is the visualization of connections
between the two levels of abstraction, one of the most common queries is “Give me
all PSM classes which have this PIM class as their interpretation”. We basically
go through each PSM schema in the project and through each PSM class in that
schema and check whether its interpretation is the given PIM class. In addition,
the model contains methods for easy traversal of both the PIM and PSM schemas.
An example can be a method for retrieval of all attributes of a PSM class including
those inherited by the structural representative constructs. Another example can
be a method that gets all uninterpreted descendants of an interpreted PSM class.
When a certain method representing a query over the model is needed by the
controller more than once, we make it a model method so that everyone can use

148

useruser

Model

Controller

Presentation

Updates

Input

Operations

View

(a) Overall architecture

+CommandOperation()
+UndoOperation()
+PrePropagation()
+PostPropagation()

CommandBase

AtomicCommand

+CommandOperation()

ComposedCommand

1*

1 *

foreach c in SubCommands

 c.PrePropagation()

 c.CommandOperation()

 c.PostPropagation()

+Undo()
+Redo()

Controller

1 1

SubCommands

UndoStack
RedoStack

+Push(in c : CommandBase)
+Pop() : CommandBase

CommandStack

c = UndoStack.Pop()

c.UndoOperation()

RedoStack.Push(c)

(b) Controller

Figure 12.2: eXolutio – main MVC components

it.
View The view component serves for two purposes: it visualizes the model for the
user and provides user-friendly interface to run the controller commands. PIM
schemas are depicted as UML diagrams and the layout of the diagram is left up to
the user preference, for PSM schemas we use automatic hierarchical layouting to
emphasize the fact that a PSM schema is a tree/forest. Besides the visualizations
of the schemas, view component provides several windows and controls that help
the user to navigate the modeled project, see the connections between individual
concepts and follow the various links (e.g. find interpretation of an attribute or
a class referred from a structural representant). The view component can be run
either as a desktop application or inside a web browser using Silverlight plugin
technology. This browser view can be used to accompany a documentation of
published XML schema standards (e.g. [107]). An interactive visualization of a
family of schemas joined by a common model can benefit greatly every system
designer, who wants to adopt a third party standard and needs a clear overview
of the whole problem domain and its individual schemas.
Controller The controller is the core of the tool. It contains all the operations
and algorithms that make the tool unique. Also, it contains the usual command
and undo/redo management. Whenever a user issues a command from view, it
is handled by the controller. The controller (depicted in Figure 12.2(b)) gets
all the necessary parameters from view such as what command is requested,
the currently selected components, the new name for a component, etc. The
controller creates the appropriate command, which in most cases will be one

149

of our composite operations (described later in this section) and passes all the
required parameters. The operation executes and updates the model accordingly.
Then it places the command on the undo stack. The command itself contains all
the information it needs to change the model back to the state it was in before
the command was executed. In other words, we can simply call undo and the
command knows what it needs to do and whether it is possible. This way, we can
stack the executed commands and perform undo and redo operations as needed
and as usual. In [89] we have described a theoretical background for atomic
(simple, well defined) and composite (user-friendly) operations, which we will
now describe from the implementation point of view. One of our goals was also
to make the two levels of abstraction (PIM and PSM) work as independently of
each other as possible while maintaining consistency when there are connections
between the levels. Therefore, the operations need to work at their respective
levels and be propagated only when there is an interpretation. Since we have
a quite complex system of operations, we had to break it down into simpler
parts. This means that among our atomic operations one can find for example an
operation that creates an attribute. But it does not do anything else than that.
Specifically, it does not give a name to the attribute, it does not set its datatype,
etc. For that, we have other atomic operations. Having the atomic operations, we
can compose more complex and user-friendly ones. A basic composite operation
can be the already mentioned creation of an attribute, which this time is user
friendly. It is composed of the creation of the attribute, renaming the attribute,
setting its cardinality and its datatype. If it was a PSM attribute, the operation
would also set its xform. So this is basically a predefined sequence of 4 or 5
operations, which is quite simple. Another simple example can be deletion of an
attribute. This means setting its cardinality, name and datatype to default values
and then deleting it. The reason for this is that when we undo this operation, we
want the name and the other values of the attribute to recover, so it is not correct
to just delete the attribute. Let us have a look at a more advanced example.

So far we have described how to compose atomic and composite operations.
However, these worked on their respective levels of abstraction. Now we have
to make sure that when there is an interpretation of a PSM schema against a
PIM schema, we keep the model in a consistent state and save the user’s time by
propagating the changes between the levels. This is achieved by the propagation.
Before each atomic operation is executed, a method implementing its propagation
to the other level is called. It determines whether there is an interpretation
and therefore the need to propagate. If so, it creates a (possibly) composite
operation on the other level of abstraction and integrates it to the currently
running operation. Only when the propagation succeeds, the original atomic
operation that caused it is executed. This way, the propagation actually becomes
a part of the currently running operation. This is convenient because when it
finishes, it can be undone and redone like any other operation.

12.3 Related work
The current approaches towards evolution management can be classified accord-
ing to distinct aspects [74, 34]. The changes and transformations can be expressed
[104, 21] as well as divided [28] variously too. However, to our knowledge there

150

exists no general framework comparable to our proposal; particular cases and
views of the problem have previously only been solved separately, superficially
and mostly imprecisely without any theoretical or formal basis.
XML ViewWe can divide the current approaches to XML schema evolution and
change management into several groups. Approaches in the first group consider
changes at the schema level and differ in the selected XML schema language,
i.e. DTD [2, 31] or XML Schema [127, 24]. The changes are expressed variously
and more or less formally. Approaches in the second and third group are similar,
but they consider changes at an abstraction of logical level – either visualization
[53] or a kind of UML diagram [39]. Both cases work at the PSM level, since
they directly model XML schemas with their abstraction. No PIM schema is
considered. All approaches consider only a single separate XML schema being
evolved.

In all the papers cited the authors consider only a single XML schema. In
[111] multiple local XML schemas are considered and mapped to a global object-
oriented schema. Then, the authors discuss possible operations with a local
schema and their propagation to the global schema. However, the global schema
does not represent a common problem domain, but a common integrated schema;
the changes are propagated just upwards and the operations are not defined rig-
orously. The need for well defined set of simple operations and their combination
is clearly identified in Section 6 of a recent survey of schema matching and map-
ping [14].

12.4 Conclusion
In this chapter, we introduced eXolutio, our tool for XML schema and data man-
agement. We surveyed related work and we showed the theoretical background
behind our tool. Its evaluation on real-world XML schemas is in section 8.8.

151

152

13. Generating Lowering and
Lifting Schema Mappings for
Semantic Web Services
With the introduction of the SAWSDL[131] W3C recommendation, the possibility
of enriching web service interfaces with semantic model references surfaced as a
foundation for semantic web services. However, the recommendation says neither
what the semantic model should be nor what to do with the actual XML data.
In this chapter, we exploit our conceptual model for XML to generate SAWSDL
enriched XML schemas, but mainly to automatically generate the so called Lifting
and Lowering schema mappings in a form of XSLT scripts. These scripts can
be used to transform the XML data produced by the web service into RDF
data (lifting) and vice versa (lowering). In the RDF data state the data can be
manipulated using a knowledge given by a corresponding ontology mapped to
our model. Also the reasoning power granted by the ontology description can be
exploited.

The content of this chapter was published as a workshop paper called Gen-
erating Lowering and Lifting Schema Mappings for Semantic Web Services1 [61]
in 2011 IEEE Workshops of International Conference on Advanced Information
Networking and Applications (AINA 2011).

13.1 Introduction
Today, the use of web services is wide-spread. Companies use them to share data
and provide and consume services. A typical web service uses XML or XML-based
languages such as SOAP as a format for data transfer along with other XML-
based languages like WSDL to describe its interface. Furthermore, web services
can be orchestrated to form more complex web services. But as always when
using various services and data sources, heterogeneity becomes a problem. It can
be partly solved by a simple XSLT stylesheet, but some format adaptations need
a more sophisticated approach. Recently, ontologies have emerged as a possibility
of describing complex relations among entities. The languages used for describing
ontologies are RDF, RDFS and OWL. The question was how to exploit the power
of ontologies for the use in web services. One part of the answer is a recent
standard SAWSDL, which describes how to enrich WSDL and XML Schema
element and type definitions with an association to a semantic model (such as an
ontology) and two links to so called lifting and lowering schema mappings. There
are basically two ways of how to exploit this approach. The first one is that a
web services produces XML data and the data is transformed (or lifted) using
the lifting schema mappings to semantic data (e.g. RDF). Then the data can be
manipulated using the power of ontologies - in addition to syntax described by
conventional means they also describe semantics of the data. Then the data can
be transformed back (lowered) to XML and transported. The second idea is to

1http://doi.ieeecomputersociety.org/10.1109/WAINA.2011.13

153

http://doi.ieeecomputersociety.org/10.1109/WAINA.2011.13

have two parties using ontological data and wanting to communicate using web
services and thus, XML. The XSLT scripts are then used in the reverse order.
First we lower the data for transport and then we lift it back to ontological data.
SAWSDL does not specify what the semantic model is nor what the schema
mappings should look like, so up to now all the lowering and lifting schema
mappings needed to be created and maintained manually.

Contributions In this chapter we ease the problem of creating lifting and low-
ering schema mappings identified e.g. in [64] by introducing a method for auto-
matic generation of lifting and lowering schema mappings. The mappings are in
a form of XSLT stylesheets. The stylesheets are generated using our conceptual
model for XML [86]. We assume that a conceptual schema of all XML schemas
in the system is created during information system analysis so we can use it for
the automatic generation of the XSLT stylesheets. This is a valid assumption,
because the conceptual model should be used for management of evolution and
integration of XML schemas anyway as shown in our previous work Chapter 1.
It can be created by a designer during the analysis of the system [86] and al-
so it can be created by a semi-automatic reverse-engineering process from the
XML schemas as we describe in Chapter 4. The contribution of this chapter is
an extension of the conceptual model toward semantic web services. The method
is experimentally implemented in our tool called XCase [54].

Outline The structure of the rest of this chapter is as follows. In Section 13.2
we briefly introduce our conceptual model for XML. In Section 13.3 we introduce
support algorithms. Section 13.4 contains a description of our algorithms for
generation of lifting and lowering XSLT stylesheets. Section 13.5 provides a brief
overview of the implementation of our approaches. Section 13.6 contains a survey
of related work and Section 13.7 concludes.

13.2 Conceptual Model for XML
In this section, we briefly summarize our original conceptual model for XML
from Chapter 3 and extend it with function ontologyEquivalent on the platform-
independent level.

We firstly introduce several symbols. L denotes the set of all string labels. La

and Le are two sets s.t. La ∪ Le = L, La ∩ Le = ∅ and each label in La starts
with the ‘@‘ symbol. D denotes the set of all basic data types such as string,
integer, etc. C ⊂ N × (N ∪ {∗}) is a set of cardinality constraints where N
denotes the set of natural numbers and (∀(x, y) ∈ C) (x ≤ y ∨ y = ∗). PS and OS

denote the power set of a set S and the set of all ordered sequences of elements
of S, respectively.

The PIM is de-facto the model of UML class diagrams. It introduces three
modeling constructs: PIM class, PIM attribute and PIM binary association. We
provide its formalization in Definition 13.1.

Definition 13.1 In this chapter, a PIM schema is a 10-tuple M = (C, A, R,
name, ontologyEquivalent, type, attrs, ends, acard, rcard) where

154

• C, A and R are sets of PIM classes, PIM attributes and oriented PIM
associations, respectively,
• name : C ∪ A ∪ R → string assigns a label to each PIM class, attribute or
association; the label is called name,
• ontologyEquivalent : C ∪ A ∪ R → string is a function which assigns
an RDF ID to each PIM class, attribute or association; the ID is called
ontologyEquivalent
• type : A → D is a function which assigns a data type to each PIM attribute,
• attrs : C → PA is a function which assigns a set of PIM attributes to each
PIM class s.t.:
– (∀A ∈ A)(∃C ∈ C)(A ∈ attrs(C)), and
– (∀C1, C2 ∈ C)(attrs(C1) ∩ attrs(C2) = ∅),

• ends : R → C × C is a function which assigns a sequence of two PIM classes
to each PIM association; for R ∈ R with ends(R) = {C1, C2} we say that
C1 and C2 participate in R and R goes from C1 to C2
• acard : A → C is a function which assigns a cardinality to each PIM at-
tribute,
• rcard : R × C → C is a function which assigns a cardinality to each PIM
class C ∈ C and PIM association R s.t. C participates in R.

The PSM consists of three modeling constructs which reflect the PIM con-
structs: PSM class, PSM attribute, and PSM binary association. Its formalization
is unchanged form the one in Definition 3.3.

13.3 PIM and Ontology relations
In this section we will describe support transformations that allow us to create
an OWL ontology from our PIM schema and vice versa. These algorithms are
not needed for the actual generation of lowering and lifting XSLT stylesheets.
However, they can ease the process when there is no PIM or no ontology present
and these would have to be created manually. In the case when we already have
a PIM and an ontology and they were not created by these algorithms, we need
to connect them manually by setting the ontologyEquivalent function for each
PIM construct to an appropriate ontology counterpart. This process can be eased
by using techniques of schema matching similar to those described in [121]. In all
the algorithms presented, we omit technical details regarding XML namespace
manipulation, as it would only cloud the basic idea.

13.3.1 OWL to PIM
This simple algorithm allows us to create a PIM schema from an OWL ontology.
Basically, we take the OWL classes and create corresponding PIM classes in a
PIM schema. This can include inheritance relations. Next we take all instances of
DatatypeProperty and create corresponding PIM attributes. The class to which
an attribute belongs to is determined be the domain of a DatatypeProperty.
The datatype of an attribute is determined by the range of a DatatypeProper-
ty. Lastly, we take all the instances of ObjectProperty and create corresponding

155

PIM associations connecting PIM classes determined by the range and domain
of the ObjectProperty. For each PIM class, attribute and association we set the
ontologyEquivalent to the id (value of rdf:about) of the ontology construct from
which they came from. Lastly, we take the attribute and association cardinalities
which in OWL are described by owl:Restriction constructs and modify the acard
and rcard functions accordingly.

These constructs are the only ones that concern us as they are the only ones
representable in our PIM.

13.3.2 PIM to OWL
This algorithm allows us to create an OWL ontology from a PIM schema. The
process is quite straightforward. For each PIM class an OWL class is generated.
For each PIM attribute, an OWL DatatypeProperty construct is generated. It has
two sub-elements. Domain indicates to which OWL class this property belongs.
Range indicates the datatype of the attribute. Next, for each PIM association an
OWL ObjectProperty construct is generated. Again, it has the domain and range
sub-elements, indicating the source and target class of an association respectively.
Lastly, we express the cardinality constraints represented by our acard and rcard
functions as owl:Restriction constructs in the created OWL classes. To keep
our propositions simple, we do not mention inheritance relations even though
they are present in our conceptual model and can be expressed in OWL by the
rdfs:subClassOf construct.

13.4 Lifting and Lowering XSLT stylesheets
In this section, we describe how the XSLT stylesheets that transform the XML da-
ta to RDF (lifting) and back from RDF to XML (lowering) work and how are they
created. Each XSLT stylesheet is automatically generated from a PSM schema
and transforms data corresponding to this schema (e.g. valid against the gener-
ated XML Schema). For easy handling by XSLT, the RDF/XML representation
of ontological data was chosen. In all the algorithms presented, we omit technical
details regarding XML namespace manipulation. Also we omit the generation of
an XSLT stylesheet header (the xsl:stylesheet and xsl:output elements), as it is al-
ways the same for all stylesheets. In the following algorithms, the function oE()
is a shortcut for the function ontologyEquivalent() and the function TNCT(X)
returns the template name corresponding to X.

13.4.1 Lifting XSLT
A lifting XSLT stylesheet allows us to transform produced XML data to its
RDF equivalent, adding references to the describing ontology. A user then can
perform various operations over the RDF data using additional manipulation
power and reasoning granted by its ontology description. What the stylesheet
does is depicted in Algorithm 3.

Note 1 In Algorithm 3 the function ID() returns an RDF ID for an XML el-
ement E. This is done for example by concatenating the ID of the correspond-

156

Algorithm 3 Lifting XSLT algorithm
1: Generate the rdf:RDF root element
2: for all XML elements E do
3: C is the PSM class corresponding to E
4: Create rdf:Description element d in the rdf:RDF element
5: Create rdf:about attribute of d and set its value to ID(E)
6: for all XML attributes Ax of E corresponding to PSM attributes A of C

do
7: Create an XML subelement of d named oE(I(A)) with the value of Ax

8: end for
9: for all XML subelements Sx corresponding to the children of C do
10: R is the PSM association connecting C and the current child
11: Create a subelement s of d named oE(I(R))
12: Create rdf:resource attribute of s and set its value to ID(Sx)
13: end for
14: end for

ing PSM class like "http://www.example.org/Customer" and the ID of E like
"#JohnDoe". Also, the IDs can be generated by the XSLT generate-id() function.

In Algorithm 4 we describe how we can generate the lifting XSLT script. First
we need a template to match the root of an XML document using XPath query
"/" (lines 2 - 6). From this template we call the template corresponding to the
root PSM class of the PSM schema (line 4). Because we assume that we will have
a well-formed XML document with only one root as the input, the xsl:for-each
construct (line 3) should only match this one root. Next we need to go through
every PSM class of the PSM schema (lines 7 - 29). For each PSM class we gen-
erate a named template. Inside the template, we generate the rdf:Description
element (line 10) which will represent the current XML element processed by the
XSLT in the RDF/XML representation of the RDF data. Next we generate the
content of the rdf:Description element. We create its rdf:about attribute contain-
ing an ID (line 14). Then we generate the link to the corresponding ontology class
(lines 17 - 19). Here we exploit the interpretation of PSM against the PIM and the
ontologyEquivalent() function on the PIM. Next we process the PSM attributes of
the current PSM class (lines 21 - 25) and transform them to XML elements with
textual content. Lastly, we process all the children of the PSM class. For sim-
plicity this process was extracted to a separate algorithm - Algorithm 5. For each
child we will need a new named template in the xslt:stylesheet element (lines 7 -
13) which creates a "reference" XML element in the rdf:Descritpion, representing
a PSM association and therefore XML nesting relation. We need to call the
template from an xsl:for-each construct (line 3) to process all the XML elements
corresponding to the child PSM class. Finally, we call the templates correspond-
ing to the child PSM classes from outside the rdf:Description element (line 16)
so that we avoid nesting, because in RDF/XML, all the rdf:Description elements
are on the first level directly in the rdf:RDF root element.

157

"http://www.example.org/Customer"
"#JohnDoe"

Algorithm 4 Lifting XSLT generation
1: Generate a template matching the XML document root element:
2: <xsl:template match="/">
3: <xsl:for-each select="xml ′(Cr)">
4: <xsl:call-template name="TNCT (Cr)"/>
5: </xsl:for-each>
6: </xsl:template>
7: for all PSM classes C do
8: Create a named template T corresponding to C:
9: <xsl:template name="TNCT (C)">
10: <rdf:Description/>
11: </xsl:template>
12: Inside the <rdf:Description/> element add:
13: <xsl:attribute name="rdf:about">
14: <xsl:value-of select="concat(oE(I(C)), @id)">
15: </xsl:attribute>
16: <rdfs:Class>
17: <xsl:attribute name="rdf:resource">
18: <xsl:text>oE(I(C))</xsl:text>
19: </xsl:attribute>
20: </rdfs:Class/>
21: for all PSM Attributes A of C do
22: <xsl:element name="IDtoXML(oE(I(A)))">
23: <xsl:value-of select="@ + xml ′(A)" />
24: </xsl:element>
25: end for
26: for all Children H of C do
27: Call Algorithm 5 to process current child
28: end for
29: end for

158

Algorithm 5 Lifting XSLT generation - Child processing
1: Call an additional template handling "nesting" relations - has e.g. "ref" at the

end of its name
2: <xsl:for-each select="xml ′(H)">
3: <xsl:call-template name="TNCT (H) + ref "/>
4: </xsl:for-each>
5: Create the additional template in the <xsl:stylesheet> element:
6: R = PSM association connecting C and H
7: <xsl:template name="TNCT (H) + ref ">
8: <xsl:element name="IDtoXML(oE(I(R)))">
9: <xsl:attribute name="rdf:resource">
10: <xsl:value-of select="concat(oE(I(H)), @id)"/>
11: </xsl:attribute>
12: </xsl:element>
13: </xsl:template>
14: Call templates corresponding to children (add to T after<rdf:Description/>):

15: <xsl:for-each select="xml ′(H)">
16: <xsl:call-template name="TNCT (H)"/>
17: </xsl:for-each>

13.4.2 Lowering XSLT
A lowering XSLT stylesheet allows us to transform the (possibly) modified RDF
data back to its XML representation described by a PSM schema (Algorithm 6).

Formally, we search for the rdf:Description representing a root element (line 1)
like this: Let Cpsm be the root PSM class and Cpim the PIM class represented by
Cpsm, such that Cpim = I(Cpsm). Then we search for an element rdf:Description,
which has a subelement rdfs:Class pointing to ontologyEquivalent(Cpim). This
ensures type consistency. Also, this element cannot be referenced from any
rdf:resource attribute so it is a root.

Algorithm 6 Lowering XSLT algorithm
1: D = The rdf:Description element corresponding to a root element
2: Start of recursion - D is current rdf:Description element
3: C = PSM class corresponding to D
4: Create an XML element named xml ′(C)
5: for all XML sub-elements E of D corresponding to PSM attributes A do
6: Create an XML attribute named xml ′(A), set its value to the content of E
7: end for
8: for all XML sub-elements F of D corresponding to PSM associations R do
9: Process (recursively) the rdf:Description element, whose rdf:about attribute

value is equal to the value of the rdf:resource attribute of F
10: end for

Now we will describe the algorithm that creates the lowering XSLT script
from a PSM schema (Algorithm 7). First we generate the template matching
the root rdf:RDF element. The XPath expression that finds the rdf:Description

159

Algorithm 7 Lowering XSLT generation
1: Generate a template matching the rdf:RDF root element:
2: XPath = "rdf:Description[descendant::rdfs:Class
3: [@rdf:resource=oE(I(Cr))]
4: and not(@rdf:about=//@rdf:resource)]/@rdf:about"
5: <xsl:template match="/rdf:RDF"/>
6: <xsl:call-template name="TNCT (Cr)">
7: <xsl:with-param name="id" select="XPath"/>
8: </xsl:call-template>
9: </xsl:template>
10: for all PSM classes C do
11: Generate a template T matching an rdf:Description element corresponding

to an instance of C:
12: XPath = "//rdf:Description[@rdf:about=$id]"
13: <xsl:template name="TNCT (C)">
14: <xsl:param name="id"/>
15: <xsl:for-each select="XPath">
16: <xml ′(C)/> {E = this element}
17: </xsl:for-each>
18: </xsl:template>
19: for all PSM attributes A of C do
20: To E add:
21: <xsl:attribute name="xml ′(A)">
22: <xsl:value-of select="oE(I(A))"/>
23: </xsl:attribute>
24: end for
25: for all Children H of C do
26: R = PSM association connecting C and H
27: To E add:
28: <xsl:for-each select="IDtoXML(oE(I(R)))">
29: <xsl:call-template name="TNCT (H)">
30: </xsl:with-param

name="id" select="@rdf:resource"/>
31: </xsl:call-template>
32: </xsl:for-each>
33: end for
34: end for

160

element representing the root (lines 2 - 4) is a bit complicated. We want an
ID contained within the rdf:about attribute of the correct rdf:Description, which
is to be transformed to the root XML element. That is the first and last part
of the XPath expression. The middle part says that we want rdf:Description
corresponding to ontologyEquivalent(I(Cr)) where Cr is the root PSM class and
I(Cr) is the PIM class represented by Cr in the PSM schema. Once we have
the query that gets us the ID, we call the appropriate template with the ID as a
parameter (lines 6 - 8).

We process each PSM class and create corresponding named templates (lines
10 - 34). For each PSM class C we create a template accepting an ID param-
eter and creating an element named xml ′(C) (lines 11 - 18). Next we process
PSM attributes Ai of C, adding an XML attribute named xml ′(Ai) with a value
set to a content of corresponding XML element in the current rdf:Description
(lines 19 - 24). Finally, we recursively process the child PSM classes and their
rdf:Description elements (lines 25 - 33) by calling the template corresponding to
a child PSM class in the xsl:for-each construct.

13.4.3 SAWSDL extension to XML schema

With the lowering and lifting stylesheets created, there is one last thing to do
for the SAWSDL standard compatibility. We add a reference to the description
of the root XML element in a form of three attributes: sawsdl:modelReference
contains an ID of the OWL class corresponding to the root XML element, saws-
dl:loweringSchemaMapping and sawsdl:liftingSchemaMapping indicate the URLs
of the lowering and lifiting XSLT stylesheets, respectively. These attributes can
be added to the XML schema that can be generated from a PSM schema auto-
matically.

13.5 Implementation

The proposed approach has been implemented in our tool called XCase [54]. It
implements all the algorithms from this chapter, the mapping of a PIM schema to
an ontology, export of a PIM schema to an ontology (Section 13.3.2), import of an
OWL Lite ontology into a PIM schema (Section 13.3.1) and also the generation
of lifting and lowering XSLT scripts from PSM schemas (Sections 13.4.1 and
13.4.2). This is in addition to its already implemented and used features like
modeling XML data using the conceptual model, exporting PSM schemas to the
XML Schema language an more. The implementation is on an experimental level,
nevertheless, it is clear that the methods proposed in this chapter are useful, as
they make the process of creating the lifting and lowering XSLT quick and easy
in contrast to manual creation. This is provided that the user uses XCase and
our conceptual model for the management of XML schemas. XCase can be found
at http://xcase.codeplex.com.

161

http://xcase.codeplex.com

13.6 Related Work
In our previous work we have discussed the possibility of automatic generation
of lifting and lowering XSLT schema mappings using a conceptual model. In this
chapter we show in detail the actual implementation of the idea, incorporating
it to our tool XCase. In [64], a survey of possible approaches to data grounding
is given. There it is stated that the creation of lifting and lowering XSLT scripts
can be difficult. Our approach automates the process by generating the scripts
from our conceptual model, which should be used anyway for the management of
XML schemas. In [65], the same author surveys SAWSDL details and applications
in a very well-arranged way. In [109], there is a comparison between SAWSDL
and OWL-S, which is another language for semantic annotations for WSDL.

In [79], an approach similar to ours is proposed and others are surveyed. The
authors suggest a mapping between an XML schema and a WSMO Ontology to
be created and expressed in WSML. From there, they suggest that XML data
should be translated to WSML instances. This is a similar idea as ours, however,
they lack the strong background of a working framework to which this approach
could be integrated. In addition, their mappings are between an ontology and
XML schema, which can be viewed as our PSM schema. Our advantage is that we
map our PIM schema to the ontology and therefore we can create one mapping
for use in all our XML schemas, instead of mapping N schemas to one ontology.
Also, we present an actual implementation that can generate the mappings.

13.7 Conclusions
In this chapter we have briefly summarized our conceptual model for XML and
extended it slightly to support mapping to ontologies. We proposed a method for
automatic generation of lifting and lowering XSLT stylesheets using this model.
The method is to be used to ease the management of semantic web services and
the experimental implementation is available in our tool, XCase [54].

The need for our conceptual model being present for our approach to be
automatic is not so limiting, because we suggest our conceptual model should be
used for XML schema management anyway and in this case the generation of the
stylesheets is easy. We did not tackle the problem of inheritance in this chapter
as it would make the description of our conceptual model more confusing and it
is not necessary for our contribution.

162

14. Using Schematron as Schema
Language in Conceptual
Modeling for XML
In our previous work, we introduced a conceptual model for XML, which utilizes
modeling, evolution and maintenance of a set of XML schemas and allows export-
ing modeled formats into grammar-based XML schema languages like DTD and
XML Schema. However, there is another type of XML schema languages called
rule-based languages with Schematron as their representative. Expressing XML
schemas in Schematron has advantages over grammar-based languages and in this
paper, we identify the advantages and we propose a method for easier creation
and maintenance of Schematron schemas using our conceptual model. Also, we
discuss the possibilities and limitations of translation from our grammar-based
conceptual model to the rule-based Schematron.

This chapter is based on a supervised master thesis by Soběslav Benda.
Contents of this chapter was published as a conference paper called Using

Schematron as Schema Language in Conceptual Modeling for XML [15] in The
Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013) that was
awarded the Best Student Paper Award.

14.1 Introduction
The standardized schema languages are Document Type Definition (DTD), W3C
XML Schema and REgular LAnguage for XML Next Generation (Relax NG).
These languages have differences in some features (e.g. expressive power, syntax
complexity, object-oriented design, etc). A common feature of these languages is
their formal background which is a Regular Tree Grammar (RTG) [81]. RTG de-
termines the maximum expressive power and gives instructions for the construc-
tion of validators. Commonly, we call these languages grammar-based schema
languages or grammars for short.

However, it is possible to express XML schemas in other languages that are
not based on RTG. An example of such language is an also standardized Schema-
tron [49]. Briefly, Schematron allows describing schemas using XPath conditions,
that are evaluated over a given XML document during validation. This brings
interesting possibilities for the validation of XML documents.

Motivation In our previous work [96, 89], we developed a methodology for
modeling, evolution and maintenance of XML schemas using a multilevel concep-
tual model based on Model Driven Architecture (MDA) [78] and we introduced
many extensions [95, 61] and described several use cases [88] of our approach.
So far, we have only supported grammar–based XML schema languages, because
of their popularity due to understandable declarations and efficient validation.
While it is true that for relatively simple schemas DTD will do and for more
complex structures XML Schema will provide the necessary constructs, there are
also drawbacks to these widely used languages. For example, when we validate

163

documents using DTD or XML Schema, we usually get a simple valid/invalid
statement as a result. In the more interesting case of invalidity, the validators
usually return a built-in error message, which is often incomprehensible, mislead-
ing and does not provide means for quality diagnostics [84]. In addition, it is
often not possible (or user-friendly) to pass them directly to the user interface.
Regarding this diagnostic problem, Schematron schema can help. Schematron is
often described as a language for description of integrity constraints [81], but it
is more than that. Using Schematron, it is possible to describe most constraints
that can be expressed by grammars. Moreover, it is possible to describe many
additional details and even structural constraints that we can not express us-
ing grammar-like languages like XML Schema. In [50], the authors identify the
demand for Schematron-based solutions for XML schema management, which is
another motivation for adding support for Schematron to our conceptual mod-
el. Finally, when combined with the approach to express integrity constraints in
the conceptual model [72], Schematron becomes a unified schema language for
description of the structure and integrity constraints of XML documents and a
framework for detailed diagnostics and error reporting. These advantages of using
Schematron outweigh its main disadvantage, which is its verbosity and complex-
ity, because it can be eased by the usage of our conceptual model for schema
management. In this chapter, we consider our conceptual model for XML as
introduced in Chapter 6.

Outline The chapter is organized as follows: In Section 14.2, we introduce
the Schematron language. Section 14.3 contains the main contribution of this
paper, the translation from the conceptual model to Schematron schemas. In
Section 14.4 we discuss related work, in Section 14.5 we evaluate our approach
and we conclude in Section 14.6.

14.2 Schematron
Schematron is a declarative language which is a representant of the rule-based
XML schema languages. These languages are not based on construction of a
grammatical infrastructure. Instead, they use rules resembling if-then-else state-
ments to describe constraints. These languages offer the finest granularity of
control over the format of the documents [130]. We can even view constructs of
other schema languages as a syntactical sugar used instead of sets of rule-based
conditions. Schematron was designed in 1999 by Rick Jelliffe. The language was
standardized in 2005 as ISO Schematron [49].

Example 14.1 Consider a specification of a complex element using the following
DTD declaration <!ELEMENT purchase (item+,customer?)>. In Schematron,
it is possible to describe the same semantics and cover valid instances using mul-
tiple intuitive conditions, for example: If purchase element exists, the element
can only have an item and a customer elements as children. The item element
has at least one occurrence and the customer element has zero or one occurrence.
If the customer element exists as a child element of a purchase element, then
the customer element has no following sibling elements.

164

Schematron is not a standalone language. It is a general framework which
allows schema designers to organize conditions which are evaluated over the giv-
en documents. These conditions are described using an underlying XML query
language such as the default XPath. A result of a validation is a report which
contains information about evaluation of these conditions. Schematron is an
XML-based language and uses only few elements and attributes for schema de-
scription.

14.2.1 Core constructs
Now we describe core Schematron constructs. The root element of every schema
is a schema element introducing the required XML namespace1. A pattern ele-
ment is a basic building stone for expressing an ordered collection of Schematron
conditions which are ordered in XML document order. A rule is a Schematron
condition which allows a designer to specify a selection of nodes from a given
document and evaluation of predicates in the context of these nodes. The rule
element has a required context attribute used for an expression in the under-
lying query language. The value of the context attribute is commonly called a
path. Predicates are specified using a collection of assertions. An assertion is a
predicate which can be positive or negative. An assertion is represented using the
assert and report elements. Both elements have a required test attribute for
specification of a predicate using the underlying query language. Both elements
also have a text content called natural-assertion. Natural-assertion is a message
in a natural language, which a validator can return in the validation report. A
positive predicate is represented using an assert element and if it is evaluated
as false, we say that the assert is violated and the document is invalid. A neg-
ative predicate is represented using a report element and if it is evaluated as
true, we say that the report is active and a natural-assertion will be reported.
Schematron is not only a validation language. It is a more general XML reporting
language [103] where one type of report is an error message.

Example 14.2 A pattern in Figure 14.1 selects all triangle elements from a
document. In a context of every triangle element a positive predicate specified
with expression count(vertex)=3 is evaluated. If the given triangle has for

<pattern>
<rule context="triangle">

<assert test="count(vertex)=3">
The element ’triangle’ should
have 3 ’vertex’ elements.

</assert>
</rule>

</pattern>

Figure 14.1: Schematron pattern

example four child vertex elements, then the predicate will be false and the fol-
lowing message will be reported: The element ’triangle’ should have 3 ’vertex’
elements.

1http://purl.oclc.org/dsdl/schematron

165

http://purl.oclc.org/dsdl/schematron

14.2.2 Additional constructs

In addition to the core Schematron constructs we describe other constructs used
in practical applications. Schematron allows using metadata for introduced con-
structs. Identifiers allow identification of a pattern inside a schema, a rule inside
the pattern, etc. It is represented using an id attribute. A role attribute can
be used to assign special semantics to Schematron constructs. A diagnostic is a
natural-language message giving details about a failed assertion, such as found
versus expected values and repair hints. It is represented using a diagnostic
element with required id attribute and text content with a message. Diagnostics
are referenced by assertions using a diagnostics attribute. We can use substi-
tutions in natural-assertions for clearer result in validation reports. An element
name is substituted by the name of a context node. An element value-of is
substituted by a value found or calculated using an expression in the required
select attribute. Abstract rules provide a mechanism for reducing schema size.
An abstract rule can be invoked by other rules belonging to the same pattern.
Variables are substituted in assertion tests and other expressions before the ex-
pression is evaluated. Phases allow to organize patterns into identified parts.
Every Schematron schema has one default phase which includes all patterns. Be-
fore validation, it can be determined which phase is used and which patterns are
activated. This selected phase is called an active-phase. A phase is represent-
ed using a phase element with an id attribute. One phase can have multiple
active elements which refer to patterns using a pattern attribute. A variable is
represented using a let element. If the variable is a child of a rule, the variable
is calculated in scope of the current rule and context. Otherwise, the variable is
calculated within the context of the instance document root. Abstract patterns
allow a common definition mechanism for structures which use different names
and paths, but which are the same otherwise.

14.2.3 Schematron implementations

An implementation of Schematron validation is very simple in general, because
it is based on already implemented XML technologies. There are two kinds of
Schematron validation.

XSLT validation

For this approach, we only need an XSLT processor and a predefined XSLT
script2. The script translates the given Schematron schema to another XSLT
script which is used for the actual XML document validation. During the valida-
tion, a given XML document is transformed into another XML document. This
document is the result of the validation and may be formatted using standard
Schematron Validation Report Language (SVRL) [49], which provides rich infor-
mation about the validation process, e.g. XPaths for elements which violated
assertions.

2http://www.schematron.com/tmp/iso-schematron-xslt1.zip

166

http://www.schematron.com/tmp/iso-schematron-xslt1.zip

Special libraries

Another approach is to use a special (platform-dependent) library. Some libraries3

only wrap the described XSLT validation. However, there are other implementa-
tions not based on XSLT. These libraries are based on the evaluation of XPath
expressions. This allows a programmer to adapt the validation for special require-
ments or possibilities of a target platform. For example, we have implemented a
C# validator called SchemaTron [16] providing excellent performance for XML
content-based message routing inside an intermediate service.

14.2.4 Schematron properties
In this section, we describe selected properties of Schematron schemas in the
context of conceptual modeling of XML and compare them with grammar-based
schemas. We mostly consider XML Schema 1.0 as their representative because
we already support it in our conceptual model for XML.

Platform independence

Schematron is based on standard XML technologies, which are commonly imple-
mented in many software environments, e.g. XSLT processor is natively imple-
mented in standard web browsers. For these reasons, we can see Schematron as a
platform independent XML schema language, because we do not need a specific
validator.

Expressive power

Presently, there is no formal framework [66] which could capture the broad set of
possibilities of Schematron conditions.

The authors of [67] provide some basic expressive possibilities of Schematron,
compare it with other schema languages and show by example that Schematron
has an excellent expressive power and in this regard it is (e.g. with XSD) a
first class XML schema language. The authors describe, that we can specify for
example: parent-child relationships, sequences, choices among elements and at-
tributes, unordered sets, min and max occurences, etc. Moreover, we can specify
many XML formats, which can not be expressed using grammars, for example
conditional definitions (e.g. a presence of elements or attributes is dependent on
a value of another element or attribute) or detailed integrity constraints, etc.

However, there is not any precise generalization of Schematron rules which
would provide a clever mapping of regular tree grammar into Schematron rules
(and vice versa), but experiments show [50] that it is possible to describe many
instances of grammars in Schematron, even in diverse ways.

14.3 PSM to Schematron translation
A PSM schema models a grammar-based XML format specification and its con-
cepts are interpreted against PIM concepts. There are several theoretical and

3http://www.probatron.org/

167

http://www.probatron.org/

practical problems that we must consider when we want to describe the transla-
tion of a PSM schema to a Schematron schema. In particular, we need to identify
groups of Schematron rules that impose equivalent constraints on the documents
as constructs of grammar-based languages would.

14.3.1 Overall view of the translation
The translation algorithm (see Algorithm 8) is fully automatic. It has a PSM
schema on the input and it gradually builds a Schematron schema on the out-
put. The generated schema covers grammatical structural constraints normally
expressed in, for example, XSD.

Algorithm 8 Overall view of the translation algorithm
1: <schema xmlns="http://purl.oclc.org /dsdl/schematron">
2: Generate allowed root element names (Section 14.3.2);
3: Generate allowed names (Section 14.3.3);
4: Generate allowed contexts (Section 14.3.4);
5: Generate required structural constraints (Section 14.3.5);
6: Generate required sibling relationships (Section 14.3.6);
7: Generate required text restrictions (Section 14.3.7);
8: </schema>

In the first step (line 2), we generate Schematron patterns for XML elements,
which are allowed inside valid XML documents as root elements. Similarly, we
generate patterns for allowed names of XML elements and XML attributes in the
next step on lines 3. On line 4, we produce patterns for allowed contexts, i.e.
paths where certain names of elements (and attributes) may occur. We call the
generated patterns absorbing patterns and we describe them later. The patterns
for validation of required complex element structures are produced in the steps
on lines 5 and 6. These patterns are more complex, because we must generate
an equivalent of regular expressions to obtain the semantics of regular grammars.
We call these patterns conditional patterns and we describe them later in this
section. In the last step (line 7), the patterns for text restrictions, i.e. validation
of attribute values and simple element contents, are produced.

14.3.2 Allowed root element names
We need a tool for reporting names of elements which are not allowed in the
schema, but are present in the document.

Definition 14.1 An absorbing pattern is a Schematron pattern for an ordered
set of paths P , where the last rule is called global and it contains the * wildcard
somewhere in its path and no previous rules use wildcards.

In this definition we defined a special kind of a Schematron pattern which we
call an absorbing pattern and which allows Schematron to absorb elements (or
attributes) specified by paths. It checks for all the allowed elements or attributes
in the path and if none of them is found, it matches whatever is found in the path
using a wildcard (absorbs it), so that the validation can continue. If the element

168

or attribute is absorbed by the wildcard, it is a violation of the expected format
and the element or attribute absorbed by the wildcard rule is reported. In the
first step on line 2 in the overall Algorithm 8, we generate an absorbing pattern
for checking allowed root elements an the intuitive way described here.
Example 14.3 As an example, consider the set of paths P , which contains paths
for all allowed root elements /request and /response. We generate the absorb-
ing pattern that is in Figure 14.2. When the validated document has request or
<pattern id="allowed-root-elements"

role="absorbing-pattern">
<rule context="/request">

<assert test="true()"/>
</rule>
<rule context="/response">

<assert test="true()"/>
</rule>
<rule context="/*">

<assert test="false()">
The element ’<name/>’ is
not declared in the schema
as a root element.

</assert>
</rule>

</pattern>

Figure 14.2: Absorbing pattern example

response element as a root, the element is absorbed and the validation contin-
ues. When the document has for example an x root element, it is absorbed by the
wildcard part of the pattern, which means that the document is invalid and the
following message is reported: The element ’x’ is not declared in the schema as
a root element. However, the validation still continues, which is in contrast to
XSD validation, which would end at this point.

14.3.3 Allowed names
The approach is very similar to generation of allowed root element names, because
we also generate absorbing patterns. Patterns for allowed attributes are also
similar, so we skip them in this paper. Production of patterns for checking
allowed XML elements inside validated documents follows this algorithm: We
produce the set P of all paths for allowed element names. For complex elements,
we get them from the names of named associations which have classes as children
in the PSM schema. For simple elements, we get the names from PSM attributes
A′ with XML form set to xform(A′) = e. From the paths and names, an absorbing
pattern is generated.

14.3.4 Allowed contexts
Now we introduce stricter patterns for checking allowed contexts, i.e. paths inside
documents. We also generate absorbing patterns, but we need more sophisticat-

169

ed paths, because we absorb only element and attribute names in the declared
contexts, so the other names (contexts) break validity.

Paths overview A path is described using an XPath expression to select some
nodes from the validated XML document. When nodes are selected, we can eval-
uate assertions, i.e. certain XPath predicates in the context of these nodes. In
general, we have two approaches to how we can describe paths, i.e. absolute paths,
for example /book/author/name or relative paths for example name. If we want
to design schemas more powerful than DTD, i.e. local regular tree grammars [81],
we need absolute paths to select nodes from documents. However, relative paths
are also important for example to design recursive declarations. There is also a
possibility to use predicates in paths. We do not deal with predicates for nodes
selection, because we aim to design a Schematron schema as simple as possible.
For this purpose, we impose a SORE precondition on our PSM schemas in Defini-
tion 14.2. Every SORE is deterministic as required by the XML specification and
more than 99% of the regular expressions in practical schemas are SOREs [19],
so the precondition does not limit us much and at the same time simplifies the
translation a lot. For instance, ((a|b),c 0..*,d 0..1) 0..3 is SORE while
a(a|b) 0..* is not as a occurs twice.

Definition 14.2 Let S ′ be a PSM schema. We will call SORE precondition an
assumption on S ′, that every complex element has content described using Single
Occurrence Regular Expression, i.e. every element (or attribute) name can occur
at most once in this regular expression.

Paths construction Here we describe the construction of paths for a PSM
schema. The main idea is as follows. For each XML element and XML attribute
declaration present in a PSM schema, we produce all possible paths (contexts)
where they can occur. Every created path is associated with a PSM component,
i.e. a complex element, a simple element or an attribute declaration and the pairs
are placed into the global set of paths Gp. In the next step, we perform sorting
of Gp members. The resulting ordered set Gp = {(X ′, p); X ′ ∈ (S ′r ∪ S ′a) and
p is path} is used for generation of Schematron rules in the order of this set in
the rest of the translation. We sort members of Gp using the following ordering:
(1) The absolute paths without recursions go first (2) The absolute paths with
recursions follow, the longest path is the first one (3) The relative paths go last,
again, the longest path is the first one to go.

Firstly, we need to create all paths for a given XML element or XML attribute
declaration. Let us mark the declaration – the given PSM component X ′ ∈
(S ′a∪S ′r). We build an ancestor tree forX ′ which represents all achievable ancestor
PSM components of X ′ in the PSM schema. Then we can translate all its paths
from leaf nodes to root node into Schematron paths, i.e. XPath expressions. For
each (X ′, p) ∈ Gp must hold that p is unique, which corresponds to the SORE
precondition in Definition 14.2.

Pattern for allowed element contexts Now we can produce patterns for
allowed contexts. We go through all members of the ordered set Gp and produce
set of paths P only for complex element names and simple element names (PSM

170

attributes with XML form set to element). In the last step we produce an
absorbing pattern for P with *. Similarly, we produce a pattern for allowed
attribute contexts.

14.3.5 Required structural constraints
Now we have absorbing patterns for weak validation of XML documents generat-
ed. These patterns say what is allowed inside the documents. Now we deal with
restrictions which say what the given document must satisfy.

Conditional pattern First of all, we specify another Schematron pattern,
which we call conditional pattern (see Definition 14.3).

Definition 14.3 A conditional pattern is a Schematron pattern for a set of pairs
E = {(p,A); where p is a path and A is a set of predicates}. It consists of several
rules and the document passes validation by this pattern only if all the rules are
satisfied.

Example 14.4 Consider a PSM schema where the root element customer must
have a ship-to child element which must have a street child element and the
street must not have any child elements. We generate a conditional pattern,
which is in Figure 14.3. The pattern resembles a collection of if-then conditions,

<pattern role="conditional-pattern">
<rule context="/customer">

<assert test="count(ship-to)=1"/>
</rule>
<rule context="/customer/ship-to">

<assert test="count(street)=1"/>
</rule>
<rule
context="/customer/ship-to/street">
<assert test="count(*)=0"/>

</rule>
</pattern>

Figure 14.3: Conditional pattern example

because it says: If the customer element exists in the document as a root, it must
hold that it has a ship-to child element. If the ship-to element exists in the
document as a child of the customer element, it must hold that it has a street
child element, etc. The example demonstrates, that we can create such a pattern
with chained rules. If we wanted to describe this pattern using XML Schema, it
would be:

<schema>
<element name="customer">
<complexType>
<sequence>
<element name="ship-to">

171

<complexType>
<sequence>
<element name="street"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

Purchase

item
1..*

ItemTester

@tester

ItemAmount

amount : int

price : double

|

Item

@code : ID

<pattern role="conditional-pattern">

 <rule context="/purchase/item">

 <assert test="@code and ((amount and price and

count(@tester)=0) or (count(amount|price)=0 and @tester))"/>

 </rule>

</pattern>
<pattern role="conditional-pattern">

 <rule context="/purchase/item">

 <assert test="@code"/>

 <assert test="amount or @tester"/>

 <assert test="price or @tester"/>

 <assert test="count(@tester)=0 or count(amount|price)=0"/>

 <assert test="price or count(amount|price)=0"/>

 <assert test="amount or count(amount|price)=0"/>

 </rule>

</pattern>

(a)

(b)

(c)

Figure 14.4: Example of element item

For the production of conditional patterns, we need to analyze specifications
of complex element contents. The complex element declared in a PSM schema is
precisely specified using a regular expression, so we need to analyze such regular
expressions and translate them into Schematron predicates. The main idea is
as follows. We translate the regular expression into several conditional patterns.
These patterns cover the same semantics as the regular expression, when they
are evaluated together.

We generate two conditional patterns for checking structural constraints as a
part of Algorithm 8 in the step on line 5. One of the generated patterns checks
required parent-child relationships, the other pattern checks required parent-
attribute relationships and other relationships of attributes and elements (predi-
cates for choices among attributes and elements). There can be also other distri-
butions of conditions into patterns. For example, everything may be inside one
pattern, but we believe that our distribution provides flexible solution, because
we can check required elements only, required attributes only, etc. In the algo-
rithm, we use translations of regular expressions into boolean expressions and
then normalization of boolean expressions into conjunctive normal form (CNF).
Due to lack of space and because these are quite standard transformations, we
do not describe them here in detail.

172

Algorithm 9 Generate patterns for structural constrains
1: Let E1 be an empty set of pairs (p,Ae);
2: Let E2 be an empty set of pairs (p,Aa);
3: for all (X ′, p) ∈ Gp do
4: if X ′ ∈ S ′r then
5: Let Ae be an empty set of predicates;
6: Let Aa be an empty set of predicates;
7: for all Y ∈ cnf (be′(X ′)) do
8: if Y has only elements in its literals then
9: Add Y into Ae;
10: else
11: Add Y into Aa;
12: end if
13: end for
14: if Ae is not empty then
15: Add (p,Ae) into E1;
16: end if
17: if Aa is not empty then
18: Add (p,Aa) into E2;
19: end if
20: end if
21: end for
22: Generate conditional pattern for E1;
23: Generate conditional pattern for E2;

Let us now take a look at Algorithm 9 for production of patterns for structural
constraints based on boolean expressions. Firstly, we initialize two empty sets
of pairs (p,Ae) (line 1) and (p,Aa) (line 2), where p is a path and Ae is a set
of associated predicates for elements, Aa is a set of associated predicates for
attributes and relations with elements. Then, we go through pairs (X ′, p) ∈ Gp

and when X ′ is a complex element declaration, we initialize new sets Ae and
Aa (lines 5 and 6) and translate X ′ into boolean expression and the boolean
expression into conjunctive normal form (line 7). Then, we go through obtained
predicates. When a predicate (marked as Y) has only elements in its literals
we add it into Ae, else we add it into Aa. Then, if Ae or Aa is not empty, we
add a pair (p,Ae) or (p,Aa) into E1 (line 15), or E2 (line 18), respectively. In
the last step (lines 22 and 23), we generate conditional patterns for E1, E2. We
have created two patterns, which cover certain structural constrains of modeled
complex contents.
Example 14.5 As an example, consider a regular expression which specifies the
complex element item in Figure 14.4(a): (@code,(amount,price)|@tester).
We translate it as @code and ((amount and price and count(@tester)=0)
or (count(amount|price)=0 and @tester)), an XPath predicate that we use
in Schematron assertion in Figure 14.4(b). This representation is quite straight-
forward and corresponds well with grammar-based languages like XML Schema.
However, it also comes with disadvantages in the form of poor diagnostics. As with
XML Schema validation, when we would validate a document using the Schema-
tron rule from Figure 14.4(b), we would only get a valid or invalid statement

173

without further details. For this purpose, it is more advantageous to go into more
detail and write the same rule as multiple simpler rules. We transform the reg-
ular expression, which is a logic formula, to a conjunctive normal form as seen
in Figure 14.4(c). Now, we can create user-friendly diagnostics for each of these
rules. Note that this is also an example of choice between attributes, which is not
possible in XML Schema but can be done using Schematron.

14.3.6 Required sibling relationships
In the previous section we generated structural constraints using boolean ex-
pressions, which allow to validate parent-child relationships. So far we did not
deal with the order of child elements inside a parent element. Here we describe
our approach based on the theory of regular expressions. The main idea is as
follows. We build a finite state automaton for a given regular expression. We
deal only with SORE so we can build the deterministic SORE automaton, where
every name of XML element is assigned to at most one inner state and it has
one initial and one final state. Then we translate information obtained from this
structure into Schematron conditions. We represent the transition function of
the automaton using conditional patterns and we cover for example the order of
XML elements (sequences, choices among elements) and also cardinalities zero
or one (0..1, or ?), just one (1..1), zero or more (0..*, or Kleene star *), one or
more (1..*, or Kleene cross +). We can also provide clear natural-assertions and
diagnostics.

There are also some problems and exceptions. Firstly, we can not cover arbi-
trary numeric intervals of regular expressions using this approach (it is possible
to create an automaton with numeric intervals, but it is not possible to represent
it in Schematron). We need another approach for numeric constraints in general,
which is not part of this paper. Secondly, a PSM content model SET complicates
construction of the algorithm. The restriction (Definition 14.4) for content model
SET is similar to restriction of XSD construct ALL.

Definition 14.4 Let S ′ be a PSM schema. We introduce SET precondition,
which is an assumption on S ′, that for each content model SET it must hold that
it has named associations with classes as children in its content and the content
model is descendant of associations R′ ∈ S ′r, (name′(R′) = λ∨ child ′(R′) /∈ S ′c) in
the complex content, where card ′(R′) = 0..1 or card ′(R′) = 1..1.

Now we can presume that we can build the automaton for each complex
element declaration, i.e. named association with class as a child. We also need to
translate obtained information into Schematron rules. For each complex element
and for elements in its content we produce a set of predicates. These predicates
are composed from following-sibling XPath axes. For each of the obtained
predicates we generate a conditional pattern in the step on line 6 in Algorithm 8.

Example 14.6 Consider content (title?,name, (phone|e-mail)+). We can
represent this regular expression using the SORE automaton in Figure 14.5(a).
Then we generate Schematron rules (see Figure 14.5(b)) which represent the au-
tomaton in Schematron. Note that we use F := following-sibling substitu-
tion for code size reduction in this example. The first rule represents the initial

174

<rule context="context">

<assert test="*[1][self::title or

self::name]"/>

</rule>

<rule context="context/title">

<assert test="F::*[1][self::name]"/>

</rule>

<rule context="context/name">

<assert test="F::*[1][self::phone or

self::e-mail]"/>

</rule>

<rule context="context/phone">

<assert test="F::*[1][self::phone or

self::e-mail] or not(F::*)"/>

</rule>

<rule context="context/e-mail">

<assert test="F::*[1][self::phone or

self::e-mail] or not(F::*)"/>

</rule>

(a) (b)

Figure 14.5: Example of an automaton in Schematron

state of the automaton and says what elements can be at the first position in the
content. Other rules represent if-then conditions, i.e. if title element exists, it
has a name follower. If name element exists, it has a phone or an e-mail fol-
lowers. If phone element exists, it has the phone element or the e-mail element
followers or no following-sibling elements.

14.3.7 Required text restrictions
In this section we show the final patterns of our proposed translation from a
PSM schema of our conceptual model for XML to Schematron. They deal with
validation of data types for simple element contents and attribute values. The
supported set of data types for PSM attributes is implementation dependent, as
we need the datatypes to be defined by the designer in Schematron. Our im-
plementation, eXolutio, provides XSD built-in simple data types and we created
the rules for their definition in Schematron, because Schematron does not provide
built-in data types as default. We can, however, create many data types specifica-
tions using XPath expressions placed into abstract rules or patterns. Schematron
over XPath 1.0, which we describe here, is worse than XSD in this practical as-
pect and we need to help ourselves by depending on the designer to define the
used datatypes. Examples of these definitions are in Figures 14.6 - 14.10.

Definition 14.5 Let S ′ be a PSM schema. We will call data types precondition
an assumption on S ′, that each data type used in S ′ has corresponding declaration
in Schematron provided by the designer or by the eXolutio tool.

In the step on line 7 of Algorithm 8 we generate patterns for data types
validation as extension rules of our predefined data type rules using the <extend/>
element in the <rule/> element.

14.3.8 Translation summary
In this section, we introduced the problem of automatic construction of Schema-
tron schemas from PSM schemas. The translation is not simple, because we have

175

<rule id="emptyString"
abstract="true">

<assert test="string-length
(normalize-space(text()))=0"/>

</rule>

Figure 14.6: Empty string data type

<rule id="string" abstract="true">
<let name="str"

value="string(text())"/>
<assert test="$str"/>

</rule>

Figure 14.7: String data type

<rule id="normalizedString"
abstract="true">

<extends rule="string"/>
<let name="nstr"

value="normalize-space($str)"/>
<assert

test="string-length($str)
=string-length($nstr)"/>

</rule>

Figure 14.8: Normalized string data type

<rule id="boolean" abstract="true">
<extends rule="string"/>
<assert test="$str=’true’

or $str=’false’"/>
</rule>

Figure 14.9: Boolean data type

different models - grammar-based PSM schema (and XML Schema, DTD, etc.)
and the rule-based Schematron. However, we showed that Schematron is a very
powerful language and it can express many grammatical structural constrains
from the grammar-based languages and more.

We started with production of absorbing patterns, which allow to validate
allowed occurrences of XML elements and XML attributes inside validated XML
documents. Then we produced conditional patterns for validation of required
grammatical structural constraints. We analyzed the most used parts of regular
expressions which can be represented in Schematron. Then we generated patterns
for validation of data types for simple element contents and attribute values.

There are some limitations to our approach that, however, do not seem criti-
cal at the moment. The most visible one is the lack of support for arbitrary nu-
meric intervals in cardinalities. We only support the usual 0..*, 0..1, 1..*,
1..1. This is because the support for arbitrary intervals would necessarily lead
to Schematron code explosions which would only complicate and slow down the

176

<rule id="double" abstract="true">
<let name="num" value="number

(normalize-space(text()))"/>
<assert test="$num"/>

</rule>

Figure 14.10: Double data type

validation process.

14.4 Related work
In parallel to the research of translation of PSM schemas to Schematron, other
PSM schema improvements are also being researched. In particular the support
for Object Constraint Language (OCL) [106] and its translation to Schematron
for the specification of integrity constraints, where Schematron is used as a com-
plement of grammar-based schemas. These patterns for integrity constraints gen-
erated from OCL may be potentially merged with our Schematron schemas. To
our best knowledge, little work has been done in the area of translations between
Schematron and other XML schema languages. There are sources not based on
academic research which provide some basic ideas and techniques for translation
of grammar-based schemas to Schematron schemas and vice versa. Most work
in this area has been done by Rick Jelliffe and his company Topologi4. They
have implemented an XSD to Schematron converter5, because their customers
preferred Schematron diagnostics over XSD validation. The generated schemas
are called Schematron-ish grammars. In [96], we provide formal description of
mutual translation between PSM schemas and regular tree grammars.

14.5 Evaluation and implementation
With our proposed method, we have generated several Schematron schemas in
various data domains using our conceptual model. The schemas are verbose and
cannot be shown here whole due to space limitations. Their structure is, however,
shown in our examples throughout the paper. During our experiments, we found
the Schematron based validation as easy to use from a domain expert’s perspective
as a validation using XML Schema would be given that both can be generated
from our conceptual model for XML. The downside of Schematron mentioned in
our motivation, which is its verbosity, is not a problem in the end because the
user does not need to read the actual generated Schematron. He only needs to
give it as an input to a Schematron validator. From the validation performance
point of view, rule-based validation (e.g. Schematron) is computationally more
expensive than the linear validation using grammar-based languages (such as
XML Schema) [84]. This could be a problem in an environment that requires high
performance validations, such as routing of XML messages. Nevertheless, when

4http://www.topologi.com/
5http://www.schematron.com/resource/XSD2SCH-2010-03-11.zip

177

http://www.topologi.com/
http://www.schematron.com/resource/XSD2SCH-2010-03-11.zip

Figure 14.11: PSM schema in eXolutio

performance is not an issue or when validating against complex XML formats,
the benefits in form of better diagnostics are more important.

The reward for using our approach is much easier diagnostics of a possible
problem in the validated XML document because as we described in this pa-
per, Schematron supports user-friendly and descriptive error messages. Also, its
expressive power is greater than that of XML Schema, which can be seen in
Figure 14.4, where we use a choice between attributes, which is not possible to
express in XML Schema. Our experiments were done using our implementation
of the conceptual model for XML, eXolutio.

eXolutio is an application developed in our research group. Its base is the
formalism for our conceptual model for XML described in [96] and a complex
system of operations and their propagation between the levels of abstraction
described in [89]. In addition, it is a platform where novel extensions to XML
schema modeling and evolution are implemented. One of them is the approach
described in this paper. In Figure 14.11 there is a PSM schema modeled in
eXolutio and in Figure 14.12 there is the generated Schematron schema.

178

Figure 14.12: Schematron schema in eXolutio

14.6 Conclusions
In this chapter we introduced Schematron, a rule-based language that can be
used for XML schema description, and its constructs. Next, we described how a
schema from our conceptual model can be translated to Schematron and described
the advantages over grammar-based languages such as XML Schema. We have
evaluated our approach and described its implementation in our tool, eXolutio.

179

180

Conclusion and Open Problems
In this thesis we presented our contributions in the area of conceptual modeling
for XML in the past years. We started with an overview published at a Ph.D.
workshop of a major database conference EDBT/ICDT (Chapter 1). Then we
presented our work in the area of XML schema integration (Chapter 2 - Chap-
ter 5), where we focused on reverse-engineering of existing XML schemas to our
conceptual model. These approaches are useful for users who do not model their
problem domain using the conceptual model yet. Then we redefined the concep-
tual model for XML itself (Chapter 6) as we gained experience from implement-
ing and extending the original one. Based on this formally redefined conceptual
model, we also formally defined the operations necessary to keep the multi-level
model consistent. We described how the simple, formally defined operations can
be combined to create user-friendly operations that propagate correctly between
the levels of the conceptual model (Chapter 7 - Chapter 10). We also showed
how the conceptual model can be used to improve desing qualities of families of
XML schemas (Chapter 11). We showed that our research contributions are also
implemented in our tools XCase and eXolutio (Chapter 12), which correspond to
the two main versions of the conceptual model for XML as they evolved during
the past years. In addition, we showed how the conceptual model can be used to
easily semantically enhance (lift) XML data to become RDF data and vice versa
(Chapter 13). Finally, we showed how Schematron - a rule based language can
be used in combination with the conceptual model for XML (Chapter 14).

Open Problems Since the area of XML evolution is relatively new, the num-
ber of current approaches and consequently solved issues is not high; there is a
significant amount of open problems and future directions we want to focus on.
The key areas involve:

• Specifics of XML Schema Languages: In [96], we show that the introduced
PSM is equivalent to the formalism of regular tree grammars [81] which
are considered as a basic formalism of XML schema languages. However,
practical XML schema languages such as [128], introduce various other
concepts (e.g. namespaces, user-defined simple data types, etc.) which
we did not consider in this thesis.

• Other Conceptual Modeling Constructs: It is common in practice to use
other modeling constructs (e.g. n-ary relationships, etc.).

• Operational and Extensional Level of the Framework: As we have described
in Section 8.3, in this thesis we focused on a subpart of the proposed frame-
work – data representation. So, naturally, there is the need to focus on those
parts which were omitted, especially extensional and operational level. The
extensional level is crucial for the applicability of our solution during sys-
tem run-time. The operational level is also very important and has been
mostly omitted in the current literature.

• Modeling of Storage Strategies: Similar to the previous point, there is need
to focus on other parts of the framework which were omitted. An important

181

aspect that has so far not been much considered is the relation of change
propagation and XML storage strategies. Currently there are approaches
that deal with evolution of database schemas [32, 12], but in our case we
have to consider a set of applications that form the system, the fact that
the XML views of the data can and will overlap and exploitation of the
relations between components of the framework. At the same time, we
want to preserve the optimal storage strategy for a given application.

• Modeling of Business Processes: As we have mentioned, in this text we
considered only the modeling of XML data processed and exchanged with-
in an XML system. However, not only the data structures, but also the
respective business processes need to be designed, maintained and updated
within the evolution process. There is neeed to extend and combine the
conceptual models of XML data with the respective business processes, to
preserve mutual relations and exploit them during the evolution process
[82].

• Relation to Ontologies: An up-to-date and important aspect of data man-
agement is establishing and exploiting their semantics. Undoubtedly, the
most popular tool for this purpose are currently ontologies. Since an on-
tology can be viewed as a particular type of schema which has strong re-
lationship to a given XML schema, a natural open issue is developing and
maintenance of such relationship under application evolution [138, 7]. How-
ever, since the ontologies bear a special type of information, their treatment
requires specific approaches [99]. We provided a step in this direction in
Chapter 13, but further research is needed.

• Advanced Operations with an XML System: In this thesis we described
two types of operations that can occur in an XML system – atomic and
composite. However, these are not the only operations that can occur within
the system. If we consider the area of integration, we need to deal with
the problem of a new incoming application and its integration with the
current ones [98], or even integration of a whole XML system. This wide
area involves issues such as reverse-engineering of conceptual models and
schema matching [134].

182

Bibliography
[1] C. ai Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello. Modeling

and Managing the Variability of Web Service-Based Systems. J. of Systems
and Software, 83(3):502 – 516, 2010.

[2] L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a DTD Evolved
into Another DTD... In Object-Oriented Information Systems, pages 3–17,
Berlin, Heidelberg, 2003. Springer.

[3] R. Al-Kamha, D. W. Embley, and S. W. Liddle. Representing Generaliza-
tion/Specialization in XML Schema. In EMISA’05, pages 250–263, 2005.

[4] R. Al-Kamha, D. W. Embley, and S. W. Liddle. Augmenting Traditional
Conceptual Models to Accommodate XML Structural Constructs. In Pro-
ceedings of 26th International Conference on Conceptual Modeling, pages
518–533, Auckland, New Zealand, Nov. 2007. Springer.

[5] A. Algergawy, R. Nayak, and G. Saake. XML Schema Element Similarity
Measures: A Schema Matching Context. In OTM ’09, pages 1246–1253.
Springer, 2009.

[6] Altova Inc. XML Spy 2009. http://www.altova.com.

[7] Y. An, A. Borgidaa, and J. Mylopoulos. Discovering and Maintaining Se-
mantic Mappings between XML Schemas and Ontologies. J. of Computing
Science and Engineering, 2(1):44–73, 2008.

[8] Y. An, X. Hu, and I.-Y. Song. Round-Trip Engineering for Maintain-
ing Conceptual-Relational Mappings. In CAiSE ’08: Proc. of the 20th
Int. Conf. on Advanced Information Systems Engineering, pages 296–311,
Berlin, Heidelberg, 2008. Springer-Verlag.

[9] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the Evo-
lution of Service Specifications. In CAiSE ’08: Proc. of the 20th Int. Conf.
on Advanced Information Systems Engineering, pages 359–374, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[10] L. Aversano, M. Bruno, M. D. Penta, A. Falanga, and R. Scognamiglio.
Visualizing the Evolution of Web Services using Formal Concept Analysis.
In IWPSE ’05: 8th Int. Workshop on Principles of Software Evolution,
pages 57–60, 2005.

[11] A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of
the 3rd International Conference on Web Information Systems Engineering
Workshops, pages 170–177, Singapore, Dec. 2002. IEEE Computer Society.

[12] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Imple-
mentation of Schema Evolution in Object-Oriented Databases. SIGMOD
Rec., 16(3):311–322, 1987.

183

http://www.altova.com

[13] I. Bedini, G. Gardarin, and B. Nguyen. Deriving Ontologies from XML
Schema. CoRR, abs/1001.4901, 2010.

[14] Z. Bellahsene, A. Bonifati, and E. Rahm. Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer Berlin Heidelberg, 2011.

[15] S. Benda, J. Klímek, and M. Nečaský. Using Schematron as Schema Lan-
guage in Conceptual Modeling for XML. In Conceptual Modelling 2013,
volume 143 of Conferences in Research and Practice in Information Tech-
nology (CRPIT). Australian Computer Society, Inc., 2013.

[16] S. Benda, B. Zámečník, M. Cicko, P. Sobotka, T. Kroupa, and M. Nečaský.
SchemaTron - Native C# validator of ISO Schematron language, September
2011.

[17] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Rec., 28(1):54–59,
1999.

[18] M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema
in UML - A Comparison of Approaches. In N. Koch, P. Fraternali, and
M. Wirsing, editors, Web Engineering, volume 3140 of Lecture Notes in
Computer Science, pages 767–769. Springer, 2004.

[19] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of Concise
DTDs from XML Data. ACM, 2006.

[20] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C, January 2007.
http://www.w3.org/TR/xquery/.

[21] A. Boronat, J. A. Carsí, and I. Ramos. Algebraic Specification of a Model
Transformation Engine. In FASE ’06: Proc. of the 9th Int. Conf. Funda-
mental Approaches to Software Engineering, Vienna, Austria, volume 3922
of LNCS, pages 262–277. Springer, 2006.

[22] B. Bouchou, D. Duarte, M. H. F. Alves, D. Laurent, and M. A. Musicante.
Schema Evolution for XML: A Consistency-Preserving Approach. In Math-
ematical Foundations of Computer Science, pages 876–888, Prague, Czech
Republic, 2004. Springer-Verlag.

[23] R. Bourret. XML and Databases, September 2005. http://www.
rpbourret.com/xml/XMLAndDatabases.htm.

[24] F. Cavalieri. EXup: an Engine for the Evolution of XML Schemas and
Associated Documents. In EDBT ’10: Proc. of the 2010 EDBT/ICDT
Workshops, pages 1–10, New York, NY, USA, 2010. ACM.

[25] D. Chamberlin, D. Florescu, J. Melton, J. Robie, and J. Siméon. XQuery
Update Facility 1.0. W3C, 2007.

[26] P. Chen. The Entity-Relationship Model–Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, Mar. 1976.

184

http://www.w3.org/TR/xquery/
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm

[27] P. Chen. Entity-Relationship Modeling: Historical Events, Future Trends,
and Lessons Learned. In Software Pioneers: Contributions to Software
Engineering, pages 296–310, New York, NY, USA, 2002. Springer.

[28] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing Dependent
Changes in Coupled Evolution. In Proc. of the 2nd Int. Conf. on Model
Transformations, ICMT 2009, Zurich, Switzerland, volume 5563 of LNCS,
pages 35–51. Springer, 2009.

[29] J. Clark and M. Makoto. RELAX NG Specification. Oasis, De-
cember 2001. http://www.oasis-open.org/committees/relax-ng/
spec-20011203.html.

[30] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A Comparison of String
Distance Metrics for Name-Matching Tasks. In IJCAI ’03 Workshop on
Information Integration, pages 73–78. AAAI, 2003.

[31] S. V. Coox. Axiomatization of the Evolution of XML Database Schema.
Program. Comput. Softw., 29(3):140–146, 2003.

[32] C. Curino, H. J. Moon, and C. Zaniolo. Automating Database Schema
Evolution in Information System Upgrades. In HotSWUp ’09: Proc. of the
2nd Int. Workshop on Hot Topics in Software Upgrades, pages 1–5, New
York, NY, USA, 2009. ACM.

[33] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful Database Schema
Evolution: the PRISM Workbench. Proc. VLDB Endow., 1(1):761–772,
2008.

[34] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation
Approaches. IBM Syst. J., 45(3):621–645, 2006.

[35] D. Booth, C. K. Liu. Web Services Description Language (WSDL) Ver-
sion 2.0 Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/
wsdl20-primer/.

[36] H. H. Do and E. Rahm. COMA – A System for Flexible Combination
of Schema Matching Approaches. In VLDB ’02, pages 610–621. Morgan
Kaufmann, 2002.

[37] G. Dobbie, W. Xiaoying, T. Ling, and M. Lee. Designing Semistructured
Databases Using ORA-SS Model. In Proceedings of the 2nd Internation-
al Conference on Web Information Systems Engineering, pages 171–182,
Kyoto, Japan, Dec. 2001.

[38] E. Domínguez, J. Lloret, B. Pérez, A. Rodríguez, A. Rubio, and M. Zapata.
A Survey of UML Models to XML Schemas Transformations. In B. Benatal-
lah, F. Casati, D. Georgakopoulos, C. Bartolini, W. Sadiq, and C. Godart,
editors, Web Information Systems Engineering - WISE 2007, volume 4831
of Lecture Notes in Computer Science, pages 184–195. Springer Berlin /
Heidelberg, 2007.

185

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/

[39] E. Domínguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML
Schemas and Documents Using UML Class Diagrams. In K. V. Andersen,
J. K. Debenham, and R. Wagner, editors, DEXA, volume 3588 of Lecture
Notes in Computer Science, pages 343–352. Springer, 2005.

[40] R. dos Santos Mello and C. A. Heuser. A Bottom-Up Approach for Inte-
gration of XML Sources. In Workshop on Information Integration on the
Web, pages 118–124, 2001.

[41] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg
(DE), 2007.

[42] J. Fong, S. K. Cheung, and H. Shiu. The XML Tree Model - toward
an XML conceptual schema reversed from XML Schema Definition. Data
Knowl. Eng., 64(3):624–661, 2008.

[43] R. France and B. Rumpe. Model-driven Development of Complex Software:
A Research Roadmap. In FOSE ’07: 2007 Future of Software Engineering,
pages 37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[44] P. Geneves, N. Layaida, and V. Quint. Identifying Query Incompatibilities
with Evolving XML Schemas. In ICFP ’09: Proc. of the 14th ACM SIG-
PLAN Int. Conf. on Functional Programming, pages 221–230, New York,
NY, USA, 2009. ACM.

[45] H. Hai, Do. Schema Matching and Mapping-based Data Integration: Archi-
tecture, Approaches and Evaluation. VDM Verlag, Saarbrücken, Germany,
Germany, 2007.

[46] T. Halpin and T. Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[47] M. Hartung, J. Terwilliger, and E. Rahm. Recent advances in schema
and ontology evolution. In Schema Matching and Mapping, Data-Centric
Systems and Applications, pages 149–190. Springer Berlin Heidelberg, 2011.

[48] Int. Organization for Standardization. ISO/IEC 9075-14:2003 Part 14:
XML-Related Specifications (SQL/XML). Int. Organization for Standard-
ization, 2006.

[49] ISO. Information Technology Document Schema Definition Languages (DS-
DL) Part 3: Rule-based Validation Schematron. ISO/IEC 19757-3, feb
2005.

[50] R. Jelliffe. Converting XML Schemas to Schematron, 2007.

[51] M. R. Jensen, T. H. Møller, and T. B. Pedersen. Converting XML Data
to UML Diagrams For Conceptual Data Integration. In In Proceedings of
DIWeb’01, 2001.

[52] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, January 2007.
http://www.w3.org/TR/xslt20/.

186

http://www.w3.org/TR/xslt20/

[53] M. Klettke. Conceptual XML Schema Evolution - The CoDEX Approach
for Design and Redesign. In M. Jarke, T. Seidl, C. Quix, D. Kensche,
S. Conrad, E. Rahm, R. Klamma, H. Kosch, M. Granitzer, S. Apel,
M. Rosenmüller, G. Saake, and O. Spinczyk, editors, Workshop Proceed-
ings Datenbanksysteme in Business, Technologie und Web (BTW 2007),
pages 53–63, Aachen, Germany, March 2007.

[54] J. Klímek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for
Conceptual XML Data Modeling. In Advances in Databases and Infor-
mation Systems, volume 5968/2010 of Lecture Notes in Computer Sci-
ence, pages 96–103. Springer Berlin / Heidelberg, March 2010. http:
//www.springerlink.com/content/v45198r1v783xu13.

[55] J. Klímek, J. Malý, I. Mlýnková, and M. Nečaský. eXolutio: Tool for XML
Schema and Data Management. In J. Pokorný, V. Snásel, and K. Richta,
editors, DATESO, volume 837 of CEUR Workshop Proceedings, pages 69–
80. CEUR-WS.org, 2012.

[56] J. Klímek, J. Malý, and M. Nečaský. XML Schema Integration with
Reusable Schema Parts. In V. Snásel, J. Pokorný, and K. Richta, edi-
tors, DATESO, volume 706 of CEUR Workshop Proceedings, pages 13–24.
CEUR-WS.org, 2011.

[57] J. Klímek, I. Mlýnková, and M. Nečaský. A Framework for XML Schema
Integration via Conceptual Model. In Advances in Web, Intelligent, Cloud,
and Mobile Systems Engineering - WISE 2010 Symposium and Workshops.
Springer, 2011.

[58] J. Klímek and M. Nečaský. Integration and Evolution of XML Data via
Common Data Model. In Proceedings of the 2010 EDBT/ICDT Workshops,
Lausanne, Switzerland, March 22-26, 2010, New York, NY, USA, 2010.
ACM.

[59] J. Klímek and M. Nečaský. Reverse-engineering of XML Schemas: A Sur-
vey. In J. Pokorný, V. Snásel, and K. Richta, editors, DATESO, volume
567 of CEUR Workshop Proceedings, pages 96–107. CEUR-WS.org, 2010.

[60] J. Klímek and M. Nečaský. Semi-automatic Integration of Web Service In-
terfaces. In IEEE International Conference on Web Services (ICWS 2010),
pages 307–314. IEEE Computer Society, 2010.

[61] J. Klímek and M. Nečaský. Generating Lowering and Lifting Schema Map-
pings for Semantic Web Services. In 25th IEEE International Conference
on Advanced Information Networking and Applications Workshops, WAINA
2010, Biopolis, Singapore, 22-25 March 2011. IEEE Computer Society,
2011.

[62] J. Klímek and M. Nečaský. Formal Evolution of XML Schemas with In-
heritance. In C. A. Goble, P. P. Chen, and J. Zhang, editors, ICWS, pages
496–503. IEEE, 2012.

187

http://www.springerlink.com/content/v45198r1v783xu13
http://www.springerlink.com/content/v45198r1v783xu13

[63] J. Klímek and M. Nečaský. On Inheritance in Conceptual Modeling for
XML. In The 3rd International Conference on Ambient Systems, Networks
and Technologies, volume 10, pages 54–61, 2012.

[64] J. Kopecký, D. Roman, M. Moran, and D. Fensel. Semantic Web Services
Grounding. In In Proceedings of the Advanced Int’l Conference on Telecom-
munications and Int’l Conference on Internet and Web Applications and
Services, 2006.

[65] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL: Semantic An-
notations for WSDL and XML Schema. IEEE Internet Computing, 11:60–
67, 2007.

[66] A. Kwong and M. Gertz. On Tree Pattern Constraints for XML Documents,
2006.

[67] D. Lee and W. W. Chu. Comparative Analysis of Six XML Schema Lan-
guages. ACM, 2000.

[68] B. S. Lerner. A Model for Compound Type Changes Encountered in Schema
Evolution. ACM Trans. Database Syst., 25(1):83–127, 2000.

[69] B. Loscio, A. Salgado, and L. Galvao. Conceptual Modeling of XML
Schemas. In Proceedings of the Fifth ACM CIKM International Workshop
on Web Information and Data Management, pages 102–105, New Orleans,
USA, Nov. 2003.

[70] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching
with Cupid. In In Proceedings of VLDB’01, pages 49–58, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[71] J. Malý, I. Mlýnková, and M. Nečaský. XML Data Transformations as
Schema Evolves. In 15th International Conference on Advances in Databas-
es and Information Systems (ADBIS 2011), LNCS, Berlin, Heidelberg,
2011. Springer-Verlag.

[72] J. Malý and M. Nečaský. Utilizing new capabilities of XML languages
to verify integrity constraints. In Proceedings of Balisage: The Markup
Conference 2012, volume 8, 2012.

[73] M. Mani. Erex: A conceptual model for xml. In Proceedings of the Second
International XML Database Symposium, pages 128–142, Toronto, Canada,
Aug. 2004.

[74] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electron.
Notes Theor. Comput. Sci., 152:125–142, 2006.

[75] Microsoft. Silverlight. http://www.microsoft.com/silverlight/.

[76] Microsoft. Windows Presentation Foundation (WPF), December 2010.
http://msdn.microsoft.com/en-us/library/ms754130.aspx.

188

http://www.microsoft.com/silverlight/
http://msdn.microsoft.com/en-us/library/ms754130.aspx

[77] G. A. Miller. WordNet: a lexical database for English. Commun. ACM,
38(11):39–41, November 1995.

[78] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management
Group, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[79] M. Moran. Towards Translating between XML and WSML based on map-
pings between XML Schema and an equivalent WSMO Ontology. In In
Proceedings of the WIW 2005 Workshop on WSMO Implementations, page
134, 2005.

[80] M. M. Moro, S. Malaika, and L. Lim. Preserving XML Queries During
Schema Evolution. In WWW ’07: Proc. of the 16th Int. Conf. on World
Wide Web, pages 1341–1342, New York, NY, USA, 2007. ACM.

[81] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
Schema Languages using Formal Language Theory. ACM Trans. Internet
Techn., 5(4):660–704, 2005.

[82] M. Murzek, G. Kramler, and E. Michlmayr. Structural Patterns for the
Transformation of Business Process Models. In EDOCW ’06: Proc. of the
10th IEEE on Int. Enterprise Distributed Object Computing Conf. Work-
shops, page 18, Washington, DC, USA, 2006. IEEE Computer Society.

[83] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: rep-
resenting knowledge about information systems. ACM Trans. Inf. Syst.,
8(4):325–362, 1990.

[84] P. Nálevka. Grammar vs. Rules, May 2010.

[85] M. Nečaský. Conceptual Modeling for XML: A Survey. In Dateso ’08, pages
40–53. CEUR-WS, Vol. 176, April 2006.

[86] M. Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations in
Database and Information Systems Series. IOS Press/AKA Verlag, January
2009.

[87] M. Nečaský. Reverse Engineering of XML Schemas to Conceptual Dia-
grams. In Proceedings of The Sixth Asia-Pacific Conference on Conceptual
Modelling, pages 117–128, Wellington, New Zealand, January 2009. Aus-
tralian Computer Society.

[88] M. Nečaský, J. Klímek, and J. Malý. When theory meets practice: A case
report on conceptual modeling for XML. In ICDIM, pages 242–251. IEEE,
2011.

[89] M. Nečaský, J. Klímek, J. Malý, and I. Mlýnková. Evolution and Change
Management of XML-based Systems. Journal of Systems and Software,
85(3):683 – 707, 2012.

[90] M. Nečaský, J. Malý, J. Klímek, and I. Mlýnková. Evolution and Change
Management of XML Applications. Technical Report May 2011, XML and
Web Engineering Research Group, Charles University in Prague, 2011.

189

http://www.omg.org/docs/omg/03-06-01.pdf

[91] M. Nečaský and I. Mlýnková. On Different Perspectives of XML Data
Evolution. In A. M. Tjoa and R. Wagner, editors, DEXA Workshops, pages
422–426. IEEE Computer Society, 2009.

[92] M. Nečaský and I. Mlýnková. When Conceptual Model Meets Grammar: A
Formal Approach to Semi-structured Data Modeling. In WISE’10, volume
6488 of LNCS, pages 279–293. Springer Berlin / Heidelberg, 2010.

[93] M. Nečaský and I. Mlýnková. Five-Level Multi-Application Schema Evo-
lution. In DATESO ’09: Proc. of the Databases, Texts, Specifications, and
Objects, pages 213–217. MatfyzPress, April 2009.

[94] M. Nečaský and I. Mlýnková. A Framework for Efficient Design, Maintain-
ing, and Evolution of a System of XML Applications. In DATESO ’10:
Proc. of the Databases, Texts, Specifications, and Objects, pages 38 – 49.
MatfyzPress, April 2010.

[95] M. Nečaský, I. Mlýnková, and J. Klímek. Model-Driven Approach to XML
Schema Evolution. In OTM Workshops, pages 514–523, 2011.

[96] M. Nečaský, I. Mlýnková, J. Klímek, and J. Malý. When conceptual model
meets grammar: A dual approach to XML data modeling. Data & Knowl-
edge Engineering, 72(0):1 – 30, 2012.

[97] M. Neĉaský. Conceptual Modeling for XML: A Survey. In V. Snásel,
K. Richta, and J. Pokorný, editors, DATESO, volume 176 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2006.

[98] H.-Q. Nguyen, D. Taniar, J. W. Rahayu, and K. Nguyen. Double-Layered
Schema Integration of Heterogeneous XML Sources. J. of Systems and
Software, 84(1):63 – 76, 2011.

[99] N. F. Noy and M. Klein. Ontology Evolution: Not the Same as Schema
Evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.

[100] OASIS. Web Services Business Process Execution Language (WSBPEL)
TC. OASIS, 2007.

[101] Object Management Group. UML Infrastructure Specification 2.1.2, nov
2007. http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

[102] Object Management Group. UML Superstructure Specification 2.1.2, nov
2007. http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[103] U. Ogbuji. A hands-on introduction to Schematron. IBM, 2004.

[104] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification Version 1.0. Object Modeling Group, April 2008. http://www.
omg.org/spec/QVT/1.0/.

[105] OMG. MOF 2.0 / XMI Mapping Specification, v2.1.1. OMG, 2009.

[106] OMG. Object Constraint Language Specification, version 2.0. OMG, 2009.

190

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/

[107] OpenTravel. Opentravel xml schemas, version 2009a. http://opentravel.
org/Specifications/SchemaIndex.aspx?FolderName=2009A.

[108] L. Palopoli, G. Terracina, and D. Ursino. DIKE: a system supporting
the semi-automatic construction of cooperative information systems from
heterogeneous databases. Softw. Pract. Exper., 33(9):847–884, 2003.

[109] M. Paolucci, M. Wagner, and D. Martin. Grounding OWL-S in SAWSDL.
In ICSOC ’07: Proceedings of the 5th international conference on Service-
Oriented Computing, pages 416–421, Berlin, Heidelberg, 2007. Springer-
Verlag.

[110] C.-S. Park and S. Park. Efficient Execution of Composite Web Services
Exchanging Intensional Data. Information Sciences, 178(2):317 – 339, 2008.

[111] K. Passi, D. Morgan, and S. Madria. Maintaining Integrated XML Schema.
In IDEAS ’09: Proc. of the 2009 Int. Database Engineering, Applications
Symp., pages 267–274, New York, NY, USA, 2009. ACM.

[112] G. D. Penna, A. D. Marco, B. Intrigila, I. Melatti, and A. Pierantonio. Inter-
operability mapping from xml schemas to er diagrams. Data & Knowledge
Engineering, 59(1):166 – 188, 2006.

[113] G. Psaila. ERX: A Conceptual Model for XML Documents. In Proceedings
of the 2000 ACM Symposium on Applied Computing, pages 898–903, Como,
Italy, Mar. 2000. ACM.

[114] R. Ravichandar, N. C. Narendra, K. Ponnalagu, and D. Gangopadhyay.
Morpheus: Semantics-based Incremental Change Propagation in SOA-
based Solutions. Services Computing, IEEE Int. Conf. on, 1:193–201, 2008.

[115] C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic integration of xml
heterogeneous data sources. In In Proceedings of IDEAS ’01, pages 199–
208, Washington, DC, USA, 2001. IEEE Computer Society.

[116] P. Rodríguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-
based Data Integration. In ER ’01: Proceedings of the 20th International
Conference on Conceptual Modeling, pages 117–132, London, UK, 2001.
Springer-Verlag.

[117] N. Routledge, L. Bird, and A. Goodchild. UML and XML Schema. In
Proceedings of 13th Australasian Database Conference (ADC 2002). ACS,
2002.

[118] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul.
Supporting the Dynamic Evolution of Web Service Protocols in Service-
Oriented Architectures. ACM Trans. Web, 2(2):1–46, 2008.

[119] A. Sengupta, S. Mohan, and R. Doshi. XER - Extensible Entity Relation-
ship Modeling. In Proceedings of the XML 2003 Conference, pages 140–154,
Philadelphia, USA, Dec. 2003.

191

http://opentravel.org/Specifications/SchemaIndex.aspx?FolderName=2009A
http://opentravel.org/Specifications/SchemaIndex.aspx?FolderName=2009A

[120] F. T. Sheldon, K. Jerath, and H. Chung. Metrics for maintainability of class
inheritance hierarchies. Journal of Software Maintenance, 14(3):147–160,
May 2002.

[121] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.
Journal on Data Semantics, 4:146–171, 2005.

[122] A. A. Simanovsky. Data Schema Evolution Support in XML-Relational
Database Systems. Program. Comput. Softw., 34(1):16–26, 2008.

[123] R. Sindhgatta and B. Sengupta. An Extensible Framework for Tracing
Model Evolution in SOA Solution Design. In OOPSLA ’09: Proc. of the
24th ACM SIGPLAN Conf. Companion on Object Oriented Programming
Systems Languages and Applications, pages 647–658, New York, NY, USA,
2009. ACM.

[124] S. Sorrentino, S. Bergamaschi, M. Gawinecki, and L. Po. Schema Nor-
malization for Improving Schema Matching. In ER ’09, pages 280–293.
Springer, 2009.

[125] P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues
and Open Questions. Software and System Modeling, 9(1):7–20, 2010.

[126] T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler and F.
Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C,
September 2006. http://www.w3.org/TR/REC-xml/.

[127] M. Tan and A. Goh. Keeping Pace with Evolving XML-Based Specifica-
tions. In EDBT’04 Workshops, pages 280–288, Berlin, Heidelberg, 2005.
Springer.

[128] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures (Second Edition). W3C, October 2004. http://www.
w3.org/TR/xmlschema-1/.

[129] P. T. T. Thuy, Y.-K. Lee, and S. Lee. DTD2OWL: Automatic Transforming
XML Documents into OWL Ontology. In In Proceedings of ICIS ’09, pages
125–131, New York, NY, USA, 2009. ACM.

[130] E. Vlist. XML Schema The W3C’s Object-Oriented Descriptions for XML.
O’Reilly Media, June 2002.

[131] W3C. Semantic Annotations for WSDL and XML Schema, August 2007.

[132] W3C OWL Working Group. OWL 2 Web Ontology Language. W3C, Oc-
tober 2009. http://www.w3.org/TR/owl2-overview/.

[133] Y. Weidong, G. Ning, and S. Baile. Reverse Engineering XML. Computer
and Computational Sciences, International Multi-Symposiums on, 2:447–
454, 2006.

192

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/owl2-overview/

[134] A. Wojnar, I. Mlýnková, and J. Dokulil. Structural and Semantic Aspects of
Similarity of Document Type Definitions and XML Schemas. Information
Sciences, 180(10):1817–1836, 2010. Special Issue on Intelligent Distributed
Information Systems.

[135] L. Xiao, L. Zhang, G. Huang, and B. Shi. Automatic Mapping from XML
Documents to Ontologies. In CIT ’04: Proceedings of the The Fourth In-
ternational Conference on Computer and Information Technology, pages
321–325, Washington, DC, USA, 2004. IEEE Computer Society.

[136] W. Yang, N. Gu, and B. Shi. Reverse Engineering XML. In J. Ni and
J. Dongarra, editors, IMSCCS (2), pages 447–454. IEEE Computer Society,
2006.

[137] A. Yu. An Overview of Research on Reverse Engineering XML Schemas
into UML Diagrams. In ICITA’05 Volume 2 - Volume 02, ICITA ’05, pages
772–777, Washington, DC, USA, 2005. IEEE Computer Society.

[138] C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when
Schemas Evolve. In VLDB ’05, pages 1006–1017. VLDB Endowment, 2005.

193

194

List of Tables
2.1 Overview of approaches according to various criteria 20

4.1 Basic possibilities for computing Sinit−attr 39
4.2 Basic possibilities for computing Sinit−class 40
4.3 Possible framework configurations 42

6.1 XML attributes and XML elements modeled by PSM constructs . 60

7.1 Examples of atomic operations for PIM schema adaptation 69
7.2 Examples of atomic operations for PSM schema adaptation 70

8.1 Atomic operations for creating new PIM components 83
8.2 Atomic operations for updating PIM components 84
8.3 Atomic operations for removing PIM components 84
8.4 Atomic operations for synchronization of PIM components 85
8.5 Atomic operations for creating PSM schemas and their components 87
8.6 Atomic operations for updating PSM components 88
8.7 Atomic operations for updating interpretations 89
8.8 Atomic operations for removing PSM schemas and their components 90
8.9 Atomic operations for synchronization of components of PSM schemas 90

10.1 Atomic operations for PIM inheritance management 123
10.2 Atomic operations for PSM inheritance management 124
10.3 Basic atomic operations with inheritance update 125

11.1 Summarization of readability, integrability and adaptability prop-
erties of NRPP . 134

11.2 Example atomic operations for PIM schema adaptation 139

195

196

List of Figures
1.1 Example of a system with 6 XML schemas 6
1.2 Example schemas of messages . 6
1.3 Five level XML evolution architecture 8
1.4 Platform independent model . 9

2.1 Six-level XML evolution and integration framework 15

3.1 Employment PIM . 26
3.2 Sample PSM . 27
3.3 Employment PSM . 31
3.4 Initial Class Similarity Adjustment 31
3.5 PG and PL for Leaf PSM Classes 33
3.6 PG for Inner PSM Classes . 34
3.7 PL for Inner PSM Classes . 35

4.1 Experiments with sample PIM and PSM 45
4.2 A sample PIM . 46
4.3 Sample PSMs . 46
4.4 Europass PIM . 47
4.5 Experiments with EuroPass XML schema 48
4.6 Experiments with OpenTravel XML schema 49

6.1 PIM schema modeling the domain of selling products 58
6.2 PSM schema modeling (a) XML format for purchase requests re-

ceived from customers, (b) XML format for purchase responses
sent to customers, (c) components shared by other PSM schemas . 61

6.3 Sample purchase request represented in the XML format modeled
by the PSM schema depicted in Figure 6.2 (a) 62

7.1 Attribute synchronization . 71
7.2 Statistics . 72

8.1 Sample XML documents represented in a single XML system . . . 78
8.2 Five-level XML evolution architecture 79
8.3 Five-level XML evolution architecture – data representation . . . 80
8.4 Evolution of a sample PIM schema demonstrating the introduced

creation, update, removal and synchronization atomic operations . 85
8.5 Evolution of a sample PSM schema demonstrating the introduced

creation, update, removal and synchronization atomic operations . 91
8.6 Visualization of the mechanism for propagating the operation for

moving PIM attributes . 94
8.7 Current XML evolution approaches 100
8.8 (a) PIM schema modeling the NRPP domain, (b) PIM schema

evolved according to new requirements. 104
8.9 PSM schemas modeling XML formats for (a) sending contract no-

tifications to NRP, (b) reporting on contract supplier selection to
the NRPP, and (c) representing procurer detail 105

197

8.10 Numbers of atomic operations performed manually by the design-
er (dark gray) and automatically by the propagation mechanism
(light gray) . 106

8.11 (a) PSM schema with common components shared between other
PSM schemas, (b) evolved PSM schema for reporting on contract
supplier selection to the NRPP, (c) evolved PSM schema for rep-
resenting procurer detail . 107

9.1 Sample PIM and PSM schema and an XML document modeld by
the PSM schem . 112

9.2 Two inheritance types in PSM schemas 114
9.3 PSM schemas for interpretation with inheritance examples 115

10.1 Propagation of moving a generalization to a more general class. . 126
10.2 Propagation of moving an attribute to a specific class. 127
10.3 eXolutio screenshot . 128

11.1 Sample XML document which demonstrates low readability, inte-
grability and adaptability of NRPP XML formats. 132

11.2 PIM Schema of Public Procurement Domain 135
11.3 Two sample PSM schemas of (a) XML format for contracts viewed

by regions, and (b) XML format for contractor details 136
11.4 Two sample XML documents valid against the XML format spec-

ified by PSM schemas depicted in 11.3(a) and 11.3(b), respectively 137
11.5 (a) PSM schema reverse-engineered from the XML document de-

picted in Fig. 11.1 and (b) its adaptation which models a better
readable XML format . 140

11.6 (a) Adaptation to PIM schema cause by new legislation, and (b)
PSM schema adapted by propagation mechanism on base of changes
to PIM schema . 143

12.1 eXolutio screenshot . 148
12.2 eXolutio – main MVC components 149

14.1 Schematron pattern . 165
14.2 Absorbing pattern example . 169
14.3 Conditional pattern example . 171
14.4 Example of element item . 172
14.5 Example of an automaton in Schematron 175
14.6 Empty string data type . 176
14.7 String data type . 176
14.8 Normalized string data type . 176
14.9 Boolean data type . 176
14.10Double data type . 177
14.11PSM schema in eXolutio . 178
14.12Schematron schema in eXolutio 179

198

	Introduction
	Outline

	Aims of the Thesis
	Research topics
	XML schemas evolution
	Integration of XML data sources

	Our approach idea
	Conceptual levels
	Logical levels

	Reverse-engineering of XML Schemas: A Survey
	Introduction
	Terms
	XML schemas
	Model-Driven Architecture
	UML class diagrams
	Schema matching

	Framework for evolution and integration of XML schemas
	Comparison criteria
	Mapping to user-friendly models
	Yang Weidong et al.
	Mikael R. Jensen et al.
	DIXSE framework
	Xyleme
	XTM - XML Tree Model
	Nečaský

	Approaches to mapping to ontologies
	Canonic Conceptual Models (CCMs)
	Xiao et al.
	Bedini et al.
	DTD2OWL

	Summary
	Conclusion

	Semi-automatic Integration of Web Service Interfaces
	Introduction
	Related work
	Conceptual Model for XML
	Algorithm
	Measuring Initial Similarity
	Building Interpretation

	Experiments
	Conclusion

	A Framework for XML Schema Integration via Conceptual Model
	Introduction
	Integration Framework
	Similarity Functions in General
	Auxiliary Similarity Functions
	PI: Measuring Initial Similarities
	PII: Initial Interpretation Setup
	PIII: Constructing Final Interpretation

	Measuring Quality
	Experimental Evaluation
	Implementation Issues

	Related Work
	Conclusion

	XML Schema Integration with Reusable Schema Parts
	Introduction
	Algorithm
	Overview
	Measuring Initial Similarity
	Initial interpretation
	Final Interpretation

	Evaluation
	Conclusion

	Refined Conceptual Model for XML
	Platform-Independent Model
	Platform-Specific Model
	Formal Model of Conceptual Perspective

	Model-Driven Approach to XML Schema Evolution
	Introduction
	Motivation
	Operations
	Propagation of Atomic Operations
	Evaluation
	Conclusions

	Evolution and Change Management of XML-based Systems
	Introduction
	Motivating and Running Example
	XML Evolution Framework
	Selected Part of the Problem

	Atomic Operations
	Atomic Operations for PIM Schema Evolution
	Atomic Operations for PSM Schema Evolution

	Propagation of Atomic Operations
	Propagation from PIM to PSM Level
	Propagation from PSM to PIM Level
	Minimality and Correctness of Atomic Operations
	Completeness of Atomic Operations

	Composite Operations
	Related Work
	Case Study and Evaluation
	Case Study: National Register for Public Procurement
	Evaluation and Comparison to Other Approaches

	Conclusions

	Inheritance in Conceptual Modeling for XML
	Introduction
	Conceptual Model with Inheritance
	Platform-Independent Model
	Platform–Specific Model
	Interpretation of PSM schema against PIM schema
	Conceptual model summary

	Translation of inheritance to XML Schema
	Related work
	Evaluation and Conclusion

	Formal Evolution of XML Schemas with Inheritance
	Introduction
	Atomic Operations
	Atomic Operations for PIM Schema Inheritance Evolution
	Atomic Operations for PSM Schema Inheritance Evolution

	Propagation of Atomic Operations
	Implementation
	Evalutation
	Related Work
	Conclusions

	When Theory Meets Practice: A Case Report on Conceptual Modeling for XML
	Introduction
	Public Contracts in the Czech Republic
	Conceptual Model for Public Contracts
	Improving Quality
	XML Format Readability
	XML Format Integrability
	XML Format Adaptability

	Methodology
	Evaluation and Related Work
	Conclusions

	eXolutio: Tool for XML Schema and Data Management
	Introduction
	eXolutio architecture
	Related work
	Conclusion

	Generating Lowering and Lifting Schema Mappings for Semantic Web Services
	Introduction
	Conceptual Model for XML
	PIM and Ontology relations
	OWL to PIM
	PIM to OWL

	Lifting and Lowering XSLT stylesheets
	Lifting XSLT
	Lowering XSLT
	SAWSDL extension to XML schema

	Implementation
	Related Work
	Conclusions

	Using Schematron as Schema Language in Conceptual Modeling for XML
	Introduction
	Schematron
	Core constructs
	Additional constructs
	Schematron implementations
	Schematron properties

	PSM to Schematron translation
	Overall view of the translation
	Allowed root element names
	Allowed names
	Allowed contexts
	Required structural constraints
	Required sibling relationships
	Required text restrictions
	Translation summary

	Related work
	Evaluation and implementation
	Conclusions

	Conclusion and Open Problems
	Bibliography

